DATABASE SYSTEMS

Design, Implementation,
and Management

12e

Carlos Coronel | Steven Morris

DATABASE SYSTEMS

Design, Implementation,
and Management

12e

Carlos Coronel | Steven Morris

~ + CENGAGE
'~ Learning

Australia « Brazil « Mexico « Singapore « United Kingdom « United States

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to
remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by
ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CENGAGE
Learning’

Database Systems: Design,
Implementation, and Management,
12th Edition

Carlos Coronel and Steven Morris

Vice President, General Manager:
Science, Math & Quantitative Business:
Balraj S. Kalsi

Product Director: Mike Schenk

Sr. Product Team Manager: Joe Sabatino

Content Development Manager: Jennifer
King

Content Developer: Ted Knight

Product Assistant: Adele Scholtz

Marketing Director: Michele McTighe

Content Project Manager: Nadia Saloom

Media Developer: Chris Valentine

Manufacturing Planner: Ron Montgomery

Marketing Communications Manager:
Dan Murphy

Production Service: Cenveo Publisher
Services

Senior Art Director: Michelle Kunkler

Cover and Internal Designer: Tippy
MclIntosh

Cover Art Credit: agsandrew/iStock/
Getty Images Plus/Getty Images

Internal Design Image: silver tiger/
Shutterstock

Intellectual Property
Analyst: Christina Ciaramella

Project Manager: Kathryn Kucharek

© 2017, 2015 Cengage Learning®

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

Screenshots for this book were created using Microsoft Access® and
Visio® and were used with permission from Microsoft. Microsoft and the
Office logo are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Oracle is a registered trademark, and Oracle12 c and MySQL are trade-
marks of Oracle Corporation.

iPhone, iPad, and iPod are registered trademarks of Apple Inc.

Library of Congress Control Number: 2015955694
Student Edition ISBN: 978-1-305-62748-2

Loose Leaf Edition ISBN: 978-1-305-86679-9

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in
more than 125 countries around the world. Find your local representative
at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions,
visit www.cengage.com

Purchase any of our products at your local college store or
at our preferred online store www.cengagebrain.com

Printed in the United States of America

Print Number: 01 Print Year: 2016

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To the treasures in my life: To Victoria, for 26 wonderful years. Thank you for your un-
ending support, for being my angel, my sweetie, and most importantly, my best friend.
To Carlos Anthony, who is an awesome older brother to all. Thank you for your words
of wisdom, hard-working attitude, and for giving us reasons to be happy. You are still
young; your best times are still to come. To Gabriela Victoria, who is the image of bril-
liance, beauty, and faithfulness. Thank you for being the sunshine in my cloudy days.
Your future is bright and endless. To Christian Javier, who is smarter than of all of us.
Thank you for being the youthful reminder of life’s simple beauties. Keep challenging
yourself to new highs. To my parents, Sarah and Carlos, thank you for your sacrifice and
example. To all of you, you are all my inspiration. “TQTATA”

Carlos Coronel

To Pamela, from high school sweetheart through 26 years of marriage, you are the beau-
tiful love of my life who has supported, encouraged, and inspired me. More than anyone
else, you are responsible for whatever successes I have achieved. To my son, Alexander
Logan, your depth of character is without measure. You are my pride and joy. To my
daughter, Lauren Elizabeth, your beauty and intensity take my breath away. You are my
heart and soul. Thank you all for the sacrifices you have made that enabled me to pur-
sue this dream. I love you so much more than I can express. To my mother, Florence
Maryann, and to the memory of my father, Alton Lamar, together they instilled in me
the desire to learn and the passion to achieve. To my mother-in-law, Connie Duke, and
to the memory of my father-in-law, Wayne Duke, they taught me to find joy in all things.
To all of you, with all my love, I dedicate this book.

Steven Morris

For Peter

To longtime colleague and friend, Peter Rob: Your drive and dedication to your students
started this book. Your depth of knowledge, attention to detail, and pursuit of excellence
made it succeed. Your patience and guidance continue to light our path. It is our sincere
hope that, as we move forward, we can continue to live up to your standard. Enjoy your
retirement, my friend; you have surely earned it.

Carlos Coronel and Steven Morris

Dedication

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface, xiv
Text Features, xix
Additional Features, xxi

Acknowledgments, xxiii

Part 1: Database Concepts 1
1. Database Systems, 2

2. Data Models, 35

Part 2: Design Concepts 71
3. The Relational Database Model, 72

4. Entity Relationship (ER) Modeling, 117

5. Advanced Data Modeling, 169
6

Normalization of Database Tables, 201

Part 3: Advanced Design and Implementation 245
7. Introduction to Structured Query Language (SQL), 246

8. Advanced SQL, 340

9. Database Design, 439

Part 4: Advanced Database Concepts 481
10. Transaction Management and Concurrency Control, 482

11. Database Performance Tuning and Query Optimization, 515

12. Distributed Database Management Systems, 553

13. Business Intelligence and Data Warehouses, 589

14. Big Data Analytics and NoSQL, 648

Part 5: Databases and the Internet 679

15. Database Connectivity and Web Technologies, 680

Part 6: Database Administration 721
16. Database Administration and Security, 722

Glossary, 769

Index, 783

iv Brief Contents

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following appendixes are included on the Instructor and Student Companion Sites at www.cengagebrain.com.

Appendix A1:
Appendix A2:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Appendix I:
Appendix J:
Appendix K:
Appendix L:
Appendix M:
Appendix N:
Appendix O:

Designing Databases with Visio Professional 2010: A Tutorial

Designing Databases with Visio 2013: A Tutorial
The University Lab: Conceptual Design

The University Lab: Conceptual Design Verification, Logical Design, and Implementation

Converting an ER Model into a Database Structure
Comparison of ER Model Notations
Client/Server Systems

Object-Oriented Databases

Unified Modeling Language (UML)
Databases in Electronic Commerce

Web Database Development with ColdFusion
The Hierarchical Database Model

The Network Database Model

MS Access Tutorial

Creating a New Database Using Oracle 12¢

Data Warehouse Implementation Factors

Brief Contents v

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Part 1: Database Concepts 1

Chapter 1: Database Systems 2

1-1 Why Databases? 3

1-2 Data versus Information 4

1-3 Introducing the Database 6
1-3a Role and Advantages of the DBMS 6
1-3b Types of Databases 8

1-4 Why Database Design is Important 11

1-5 Evolution of File System Data Processing 14

1-5a Manual File Systems 14

1-5b Computerized File Systems 15

1-5¢ File System Redux: Modern End-User Productivity Tools 17
1-6 Problems with File System Data Processing 18

1-6a Structural and Data Dependence 19

1-6b Data Redundancy 20

1-6¢c Data Anomalies 21
1-7 Database Systems 21

1-7a The Database System Environment 22

1-7b DBMS Functions 24

1-7c Managing the Database System: A Shift in Focus 28
1-8 Preparing for Your Database Professional Career 28

Summary 30 « KeyTerms 31 - Review Questions 32 - Problems 32

Chapter 2: Data Models 35
2-1 Data Modeling and Data Models 36
2-2 The Importance of Data Models 37
2-3 Data Model Basic Building Blocks 37

2-4 Business Rules 39
2-4a Discovering Business Rules 39
2-4b Translating Business Rules into Data Model Components 40
2-4c Naming Conventions 41
2-5 The Evolution of Data Models 41
2-5a Hierarchical and Network Models 41
2-5b The Relational Model 43
2-5c The Entity Relationship Model 45
2-5d The Object-Oriented (O0O) Model 48
2-5e Object/Relational and XML 49
2-5f Emerging Data Models: Big Data and NoSQL 50
2-5g Data Models: A Summary 56
2-6 Degrees of Data Abstraction 57
2-6a The External Model 60
2-6b The Conceptual Model 61
2-6¢ The Internal Model 62
2-6d The Physical Model 63

Summary 64 - KeyTerms 65 « Review Questions 65 « Problems 66

Part 2: Design Concepts 71

Chapter 3: The Relational Database Model 72

3-1 Alogical View of Data 73
3-1a Tables and Their Characteristics 73

vi Contents

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3-2 Keys 76
3-2a Dependencies 76
3-2b Types of Keys 77
3-3 Integrity Rules 80
3-4 Relational Algebra 82
3-4a Formal Definitions and Terminology 82
3-4b Relational Set Operators 83
3-5 The Data Dictionary and the System Catalog 91
3-6 Relationships within the Relational Database 93
3-6a The 1:M Relationship 93
3-6b The 1:1 Relationship 95
3-6¢ The M:N Relationship 97
3-7 Data Redundancy Revisited 101
3-8 Indexes 103
3-9 Codd'’s Relational Database Rules 104

Summary 106 « Key Terms 107 - Review Questions 107 « Problems 110

Chapter 4: Entity Relationship (ER) Modeling 117

4-1 The Entity Relationship Model (ERM) 118
4-1a Entities 118
4-1b Attributes 118
4-1c Relationships 124
4-1d Connectivity and Cardinality 125
4-1e Existence Dependence 126
4-1f Relationship Strength 126
4-1g Weak Entities 129
4-1h Relationship Participation 131
4-1i Relationship Degree 134
4-1j Recursive Relationships 136
4-1k Associative (Composite) Entities 138
4-2 Developing an ER Diagram 140
4-3 Database Design Challenges: Conflicting Goals 147

Summary 152 « Key Terms 153 « Review Questions 153 « Problems 156 « Cases 161

Chapter 5: Advanced Data Modeling 169

5-1 The Extended Entity Relationship Model 170
5-1a Entity Supertypes and Subtypes 170
5-1b Specialization Hierarchy 171
5-1c Inheritance 172
5-1d Subtype Discriminator 174
5-1e Disjoint and Overlapping Constraints 174
5-1f Completeness Constraint 175
5-1g Specialization and Generalization 176
5-2 Entity Clustering 176
5-3 Entity Integrity: Selecting Primary Keys 177
5-3a Natural Keys and Primary Keys 178
5-3b Primary Key Guidelines 178
5-3¢ When To Use Composite Primary Keys 178
5-3d When To Use Surrogate Primary Keys 180
5-4 Design Cases: Learning Flexible Database Design 182
5-4a Design Case 1: Implementing 1:1 Relationships 182
5-4b Design Case 2: Maintaining History of Time-Variant Data 183
5-4¢ Design Case 3: Fan Traps 186
5-4d Design Case 4: Redundant Relationships 187

Summary 188 « Key Terms 189 « Review Questions 189 « Problems 190 . Cases 192

Chapter 6: Normalization of Database Tables 201

6-1 Database Tables and Normalization 202

6-2 The Need For Normalization 202

6-3 The Normalization Process 206
6-3a Conversion To First Normal Form 208
6-3b Conversion To Second Normal Form 211
6-3c Conversion To Third Normal Form 213

Contents vii

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6-4 Improving the Design 215

6-5 Surrogate Key Considerations 219

6-6 Higher-Level Normal Forms 220
6-6a The Boyce-Codd Normal Form 221
6-6b Fourth Normal Form (4NF) 224

6-7 Normalization and Database Design 226

6-8 Denormalization 229

6-9 Data-Modeling Checklist 232

Summary 234 « Key Terms 235 . Review Questions 235 « Problems 237

Part 3: Advanced Design and Implementation 245

Chapter 7: Introduction to Structured Query Language (SQL) 246

7-1 Introduction to SQL 247
7-2 Data Definition Commands 249
7-2a The Database Model 249
7-2b Creating The Database 251
7-2c The Database Schema 251
7-2d Data Types 252
7-2e Creating Table Structures 255
7-2f SQL Constraints 259
7-2g SQL Indexes 263
7-3 Data Manipulation Commands 264
7-3a Adding Table Rows 264
7-3b Saving Table Changes 266
7-3c Listing Table Rows 266
7-3d Updating Table Rows 268
7-3e Restoring Table Contents 269
7-3f Deleting Table Rows 269
7-3g Inserting Table Rows with a Select Subquery 270
7.4 SELECT Queries 271
7-4a Selecting Rows with Conditional Restrictions 271
7-4b Arithmetic Operators: The Rule of Precedence 276
7-4c Logical Operators: AND, OR, and NOT 277
7-4d Special Operators 279
7-5 Additional Data Definition Commands 283
7-5a Changing a Column’s Data Type 284
7-5b Changing a Column’s Data Characteristics 284
7-5¢ Adding a Column 284
7-5d Dropping a Column 285
7-5e Advanced Data Updates 285
7-5f Copying Parts of Tables 287
7-5g Adding Primary and Foreign Key Designations 289
7-5h Deleting a Table from the Database 290
7-6 Additional SELECT Query Keywords 290
7-6a Ordering a Listing 290
7-6b Listing Unique Values 292
7-6¢ Aggregate Functions 292
7-6d Grouping Data 297
7-7 Joining Database Tables 300
7-7a Joining Tables with an Alias 303
7-7b Recursive Joins 303

Summary 305 « Key Terms 306 - Review Questions 306 « Problems 307 - Cases 331

Chapter 8: Advanced SQL 340

8-1 SQL Join Operators 341
8-1a Cross Join 342
8-1b Natural Join 343
8-1c JOIN USING Clause 344
8-1d JOIN ON Clause 345
8-1e Outer Joins 347
8-2 Subqueries and Correlated Queries 349
8-2a WHERE Subqueries 351
8-2b IN Subqueries 352

viii Contents

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8-2c HAVING Subqueries 353
8-2d Multirow Subquery Operators: ANY and ALL 353
8-2e FROM Subqueries 355
8-2f Attribute List Subqueries 356
8-2g Correlated Subqueries 358
8-3 SQL Functions 361
8-3a Date and Time Functions 361
8-3b Numeric Functions 366
8-3c String Functions 366
8-3d Conversion Functions 368
8-4 Relational Set Operators 371
8-4a UNION 371
8-4b UNION ALL 373
8-4c INTERSECT 373
8-4d EXCEPT (MINUS) 375
8-4e Syntax Alternatives 377
8-5 Virtual Tables: Creating a View 377
8-5a Updatable Views 379
8-6 Sequences 382
8-7 Procedural SQL 387
8-7a Triggers 392
8-7b Stored Procedures 401
8-7c PL/SQL Processing with Cursors 407
8-7d PL/SQL Stored Functions 409
8-8 Embedded SQL 410

Summary 415 « Key Terms 416 - Review Questions417 - Problems 418 - Cases 435

Chapter 9: Database Design 439

9-1 The Information System 440
9-2 The Systems Development Life Cycle 442
9-2a Planning 442
9-2b Analysis 443
9-2c Detailed Systems Design 444
9-2d Implementation 444
9-2e Maintenance 445
9-3 The Database Life Cycle 445
9-3a The Database Initial Study 445
9-3b Database Design 450
9-3c Implementation and Loading 451
9-3d Testing and Evaluation 454
9-3e Operation 456
9-3f Maintenance and Evolution 457
9-4 Conceptual Design 457
9-4a Data Analysis and Requirements 459
9-4b Entity Relationship Modeling and Normalization 461
9-4c Data Model Verification 464
9-4d Distributed Database Design 467
9-5 DBMS Software Selection 467
9-6 Logical Design 468
9-6a Map the Conceptual Model to the Logical Model 468
9-6b Validate the Logical Model Using Normalization 470
9-6¢ Validate Logical Model Integrity Constraints 470
9-6d Validate the Logical Model Against User Requirements 471
9-7 Physical Design 471
9-7a Define Data Storage Organization 472
9-7b Define Integrity and Security Measures 472
9-7c Determine Performance Measures 473
9-8 Database Design Strategies 473
9-9 Centralized Versus Decentralized Design 474

Summary 477 - Key Terms 477 - Review Questions 477 - Problems 478

Contents ix

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

x Contents

Part 4: Advanced Database Concepts 481

Chapter 10: Transaction Management and Concurrency Control 482

10-1 What Is a Transaction? 483
10-1a Evaluating Transaction Results 484
10-1b Transaction Properties 487
10-1c Transaction Management with SQL 488
10-1d The Transaction Log 489
10-2 Concurrency Control 490
10-2a Lost Updates 490
10-2b Uncommitted Data 491
10-2c Inconsistent Retrievals 492
10-2d The Scheduler 493
10-3 Concurrency Control with Locking Methods 495
10-3a Lock Granularity 496
10-3b Lock Types 498
10-3c Two-Phase Locking to Ensure Serializability 500
10-3d Deadlocks 500
10-4 Concurrency Control with Time Stamping Methods 502
10-4a Wait/Die and Wound/Wait Schemes 502
10-5 Concurrency Control with Optimistic Methods 503
10-6 ANSI Levels of Transaction Isolation 504
10-7 Database Recovery Management 506
10-7a Transaction Recovery 506

Summary 510 « Key Terms 511 « Review Questions 511 « Problems 512

Chapter 11: Database Performance Tuning
and Query Optimization 515

11-1 Database Performance-Tuning Concepts 516
11-1a Performance Tuning: Client and Server 517
11-1b DBMS Architecture 518
11-1c Database Query Optimization Modes 520
11-1d Database Statistics 521
11-2 Query Processing 522
11-2a SQL Parsing Phase 523
11-2b SQL Execution Phase 524
11-2c SQL Fetching Phase 525
11-2d Query Processing Bottlenecks 525
11-3 Indexes and Query Optimization 526
11-4 Optimizer Choices 528
11-4a Using Hints to Affect Optimizer Choices 530
11-5 SQL Performance Tuning 531
11-5a Index Selectivity 531
11-5b Conditional Expressions 533
11-6 Query Formulation 534
11-7 DBMS Performance Tuning 536
11-8 Query Optimization Example 538

Summary 546 « Key Terms 547 - Review Questions 547 « Problems 548

Chapter 12: Distributed Database Management Systems 553

12-1 The Evolution of Distributed Database Management Systems 554
12-2 DDBMS Advantages and Disadvantages 556
12-3 Distributed Processing and Distributed Databases 556
12-4 Characteristics of Distributed Database Management Systems 559
12-5 DDBMS Components 560
12-6 Levels of Data and Process Distribution 561
12-6a Single-Site Processing, Single-Site Data 561
12-6b Multiple-Site Processing, Single-Site Data 562
12-6¢ Multiple-Site Processing, Multiple-Site Data 563
12-7 Distributed Database Transparency Features 564
12-8 Distribution Transparency 565

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12-9 Transaction Transparency 568
12-9a Distributed Requests and Distributed Transactions 568
12-9b Distributed Concurrency Control 571
12-9c Two-Phase Commit Protocol 571
12-10 Performance and Failure Transparency 573
12-11 Distributed Database Design 575
12-11a Data Fragmentation 575
12-11b Data Replication 578
12-11c Data Allocation 580
12-12 The CAP Theorem 581
12-13 C.J. Date’s 12 Commandments for Distributed Databases 583

Summary 584 « Key Terms 585 « Review Questions 585 « Problems 586

Chapter 13: Business Intelligence and Data Warehouses 589

13-1 The Need for Data Analysis 590
13-2 Business Intelligence 590

13-2a Business Intelligence Architecture 592

13-2b Business Intelligence Benefits 598

13-2¢ Business Intelligence Evolution 598

13-2d Business Intelligence Technology Trends 601
13-3 Decision Support Data 602

13-3a Operational Data Versus Decision Support Data 602

13-3b Decision Support Database Requirements 605
13-4 The Data Warehouse 607

13-4a Data Marts 610

13-4b Twelve Rules That Define a Data Warehouse 610
13-5 Star Schemas 610

13-5a Facts 611

13-5b Dimensions 611

13-5¢ Attributes 612

13-5d Attribute Hierarchies 614

13-5e Star Schema Representation 616

13-5f Performance-Improving Techniques for the Star Schema 617
13-6 Online Analytical Processing 621

13-6a Multidimensional Data Analysis Techniques 621

13-6b Advanced Database Support 623

13-6¢ Easy-to-Use End-User Interfaces 623

13-6d OLAP Architecture 623

13-6e Relational OLAP 626

13-6f Multidimensional OLAP 628

13-6g Relational versus Multidimensional OLAP 628
13-7 SQL Extensions for OLAP 629

13-7a The ROLLUP Extension 630

13-7b The CUBE Extension 631

13-7c Materialized Views 633

Summary 636 « Key Terms 637 - Review Questions 637 « Problems 639

Chapter 14: Big Data Analytics and NoSQL 648

14-1 Big Data 649

14-1a Volume 651

14-1b Velocity 652

14-1c Variety 653

14-1d Other Characteristics 654
14-2 Hadoop 655

14-2a HDFS 655

14-2b MapReduce 658

14-2c Hadoop Ecosystem 660
14-3 NoSQL 662

14-3a Key-Value Databases 663

14-3b Document Databases 664

14-3¢ Column-Oriented Databases 665

14-3d Graph Databases 668

14-3e NewSQL Databases 669

Contents xi

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14-4 Data Analytics 670
14-4a Data Mining 671
14-4b Predictive Analytics 673

Summary 675 « Key Terms 676 - Review Questions 677

Part 5: Databases and the Internet 679

Chapter 15: Database Connectivity and Web Technologies 680

15-1 Database Connectivity 681
15-1a Native SQL Connectivity 682
15-1b ODBC, DAO, and RDO 683
15-1c OLE-DB 685
15-1d ADO.NET 687
15-1e Java Database Connectivity (JDBC) 691
15-2 Database Internet Connectivity 692
15-2a Web-to-Database Middleware: Server-Side Extensions 693
15-2b Web Server Interfaces 695
15-2c The Web Browser 696
15-2d Client-Side Extensions 697
15-2e Web Application Servers 698
15-2f Web Database Development 699
15-3 Extensible Markup Language (XML) 702
15-3a Document Type Definitions (DTD) and XML Schemas 704
15-3b XML Presentation 706
15-3¢ XML Applications 708
15-4 Cloud Computing Services 709
15-4a Cloud Implementation Types 712
15-4b Characteristics of Cloud Services 712
15-4c Types of Cloud Services 713
15-4d Cloud Services: Advantages and Disadvantages 714
15-4e SQL Data Services 716

Summary 717 « Key Terms 718 - Review Questions 718 « Problems 719

Part 6: Database Administration 721

Chapter 16: Database Administration and Security 722

16-1 Data as a Corporate Asset 723
16-2 The Need for a Database and its Role in an Organization 724
16-3 Introduction of a Database: Special Considerations 726
16-4 The Evolution of Database Administration 727
16-5 The Database Environment’s Human Component 731
16-5a The DBA’s Managerial Role 733
16-5b The DBA’s Technical Role 738
16-6 Security 745
16-6a Security Policies 746
16-6b Security Vulnerabilities 746
16-6¢ Database Security 748
16-7 Database Administration Tools 749
16-7a The Data Dictionary 750
16-7b Case Tools 752
16-8 Developing a Data Administration Strategy 755
16-9 The DBA’s Role in the Cloud 756
16-10 The DBA at Work: Using Oracle for Database Administration 757
16-10a Oracle Database Administration Tools 758
16-10b Ensuring that the RDBMS Starts Automatically 758
16-10c Creating Tablespaces and Datafiles 760
16-10d Managing Users and Establishing Security 762
16-10e Customizing the Database Initialization Parameters 763

Summary 765 - KeyTerms 766 « Review Questions 767
Glossary 769
Index 783

xii Contents

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following appendixes are included on the Instructor and Student Companion Sites at www.cengagebrain.com.

Appendix A1:
Appendix A2:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:
Appendix I:
Appendix J:
Appendix K:
Appendix L:
Appendix M:
Appendix N:
Appendix O:

Designing Databases with Visio Professional 2010: A Tutorial

Designing Databases with Visio 2013: A Tutorial
The University Lab: Conceptual Design

The University Lab: Conceptual Design Verification, Logical Design, and Implementation

Converting an ER Model into a Database Structure
Comparison of ER Model Notations
Client/Server Systems

Object-Oriented Databases

Unified Modeling Language (UML)
Databases in Electronic Commerce

Web Database Development with ColdFusion
The Hierarchical Database Model

The Network Database Model

MS Access Tutorial

Creating a New Database Using Oracle 12¢

Data Warehouse Implementation Factors

Contents xiii

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiv Preface

It is our great pleasure to present the twelfth edition of Database Systems. We are grateful and
humbled that so many of our colleagues around the world have chosen this text to support their
classes. We wrote the first edition of this book because we wanted to explain the complexity of
database systems in a language that was easy for students to understand. Over the years, we have
maintained this emphasis on reaching out to students to explain complex concepts in a practical,
approachable manner. This book has been successful through eleven editions because the au-
thors, editors, and the publisher paid attention to the impact of technology and to adopter ques-
tions and suggestions. We believe that this twelfth edition successfully reflects the same attention
to such factors.

In many respects, rewriting a book is more difficult than writing it the first time. If the book is
successful, as this one is, a major concern is that the updates, inserts, and deletions will adversely
affect writing style and continuity of coverage. The combination of superb reviewers and editors,
plus a wealth of feedback from adopters and students of the previous editions, helped make this
new edition the best yet.

Changes to The Twelfth Edition

In this twelfth edition, we added some new features and reorganized some coverage to provide
a better flow of material. Aside from enhancing the already strong coverage of database design,
we made other improvements in the topical coverage. In particular, the continued growth of Big
Data and NoSQL technologies have challenged the status quo in the database industry. Therefore,
we created an entire new chapter, Big Data Analytics and NoSQL, to help students grasp the key
aspects of these complex new technologies and challenges. The twelfth edition also presents a ma-
jor step forward in the integration of digital content with the text through online, automatically
graded exercises to improve student outcomes. Here are a few of the highlights of changes in the
twelfth edition:

o New coverage of Big Data challenges beyond the traditional 3Vs
o Expanded coverage of Hadoop, the Hadoop Distributed File System (HDFS), and MapReduce
o Updated coverage of cloud data services and their impact on DBAs

o Expanded coverage of NoSQL databases, including key-value databases, document databases,
column-oriented database, and graph databases

o New coverage of the emerging NewSQL technologies
o Improved coverage of data visualization
o Added coverage of new sequence and identity capabilities in Oracle and SQL Server

o Complete redesign of the look and feel of the text and layout to improve readability and visual
appeal

o Embedded key term definitions within the text

This twelfth edition continues to provide a solid and practical foundation for the design, im-
plementation, and management of database systems. This foundation is built on the notion that,
while databases are very practical, their successful creation depends on understanding the im-
portant concepts that define them. It’s not easy to come up with the proper mix of theory and
practice, but the previously mentioned feedback suggests that we largely succeeded in our quest
to maintain the proper balance.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Approach: A Continued Emphasis
On Design

As the title suggests, Database Systems: Design, Implementation, and Management covers three
broad aspects of database systems. However, for several important reasons, special attention is
given to database design.

o The availability of excellent database software enables people with little experience to cre-
ate databases and database applications. Unfortunately, the “create without design” approach
usually paves the road to a number of database disasters. In our experience, many database
system failures are traceable to poor design and cannot be solved with the help of even the
best programmers and managers. Nor is better DBMS software likely to overcome problems
created or magnified by poor design. Even the best bricklayers and carpenters can’t create a
good building from a bad blueprint.

o Most vexing problems of database system management seem to be triggered by poorly de-
signed databases. It hardly seems worthwhile to use scarce resources to develop excellent da-
tabase management skills merely to use them on crises induced by poorly designed databases.

o Design provides an excellent means of communication. Clients are more likely to get what they
need when database system design is approached carefully and thoughtfully. In fact, clients may
discover how their organizations really function once a good database design is completed.

o Familiarity with database design techniques promotes understanding of current database
technologies. For example, because data warehouses derive much of their data from opera-
tional databases, data warehouse concepts, structures, and procedures make more sense when
the operational database’s structure and implementation are understood.

Because the practical aspects of database design are stressed, we have covered design concepts
and procedures in detail, making sure that the numerous end-of-chapter problems and cases are
sufficiently challenging so students can develop real and useful design skills. We also make sure
that students understand the potential and actual conflicts between database design elegance,
information requirements, and transaction processing speed. For example, it makes little sense to
design databases that meet design elegance standards while they fail to meet end-user informa-
tion requirements. Therefore, we explore the use of carefully defined trade-offs to ensure that the
databases meet end-user requirements while conforming to high design standards.

Topical Coverage
The Systems View

The booKs title begins with Database Systems. There-
fore, we examine the database and design concepts
covered in Chapters 1-6 as part of a larger whole by
placing them within the systems analysis framework of
Chapter 9. Database designers who fail to understand
that the database is part of a larger system are likely
to overlook important design requirements. In fact,
Chapter 9, Database Design, provides the map for the
advanced database design developed in Appendixes B
and C. Within the larger systems framework, we can
also explore issues such as transaction management
and concurrency control (Chapter 10), distributed da-

tabase management systems (Chapter 12), business in- D
atabase Concepts
telligence and data warehouses (Chapter 13), database P

connectivity and web technologies (Chapter 15), and
database administration and security (Chapter 16).

1 Database Systems

2 Data Models

Preface xv

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Database Design

In this chapter, you will learn:

« That a sound database design is the ion for a successful i system, and that the
database design must reflect the information system of which the database is a part
« That successful i ion systems are within a known as the Systems

Development Life Cycle (SDLC)

« That within the information system, the most successful databases are subject to frequent
evaluation and revision within a framework known as the Database Life Cycle (DBLC)

+ How to conduct evaluation and revision within the SDLC and DBLC frameworks

« About database design strategies: top-down versus bottom-up design and centralized versus
decentralized design

i Databases are a part of a larger picture called an information system. Database designs
Preview 3 ik t :

that fail to recognize this fact are not likely to be successful. Database designers must rec-
ognize that the database is a critical means to an end rather than an end in itself. Managers
want the database to serve their management needs, but too many databases seem to force
managers to alter their routines to fit the database requirements.

Information systems don’t just happen; they are the product of a carefully staged devel-
opment process. Systems analysis is used to determine the need for an information system
and to establish its limits. Within systems analysis, the actual information system is cre-
ated through a process known as systems development.

The creation and evolution of information systems follows an iterative pattern called
the Systems Development Life Cycle (SDLC), which is a continuous process of creation,

i I and replacement of the information system. A similar cycle
applies to databases: the database is created, maintained, enhanced, and eventually
replaced. The Database Life Cycle (DBLC) is carefully traced in this chapter, and is shown
in the context of the larger Systems Development Life Cycle.

At the end of the chapter, you will be introduced to some classical approaches to data-
base design: top-down versus bottom-up and centralized versus decentralized.

Data Files Available on cengagebrain.com

Note

Because it is purely conceptual, this chapter does not reference any data files.

Database Design

The first item in the booK’s subtitle is Design, and our
examination of database design is comprehensive. For
example, Chapters 1 and 2 examine the development
and future of databases and data models, and illustrate
the need for design. Chapter 3 examines the details of
the relational database model; Chapter 4 provides ex-
tensive, in-depth, and practical database design cover-
age; and Chapter 5 explores advanced database design
topics. Chapter 6 is devoted to critical normalization
issues that affect database efficiency and effectiveness.
Chapter 9 examines database design within the systems
framework and maps the activities required to success-
fully design and implement the complex, real-world
database developed in Appendixes B and C. Appendix
A, Designing Databases with Visio Professional: A Tu-
torial, provides a good introductory tutorial for the use
of a database design tool.

Because database design is affected by real-world
transactions, the way data is distributed, and ever-in-
creasing information requirements, we examine major
database features that must be supported in current-gen-
eration databases and models. For example, Chapter 10,
Transaction Management and Concurrency Control,
focuses on the characteristics of database transactions
and how they affect database integrity and consistency.
Chapter 11, Database Performance Tuning and Query

Optimization, illustrates the need for query efficiency in a world that routinely generates and uses tera-
byte-size databases and tables with millions of records. Chapter 12, Distributed Database Management
Systems, focuses on data distribution, replication, and allocation. In Chapter 13, Business Intelligence
and Data Warehouses, we explore the characteristics of databases that are used in decision support and
online analytical processing. Chapter 14, Big Data Analytics and NoSQL, explores the challenges of
designing nonrelational databases to use vast global stores of unstructured data. Chapter 15, Database
Connectivity and Web Technologies, covers the basic database connectivity issues in a web-based data
world, development of web-based database front ends, and emerging cloud-based services.

7 Introduction to Structured Query Language (SQL)

8 Advanced SQL

9 Database Design

xvi Preface

Implementation

The second portion of the subtitle is Iinplementation.
We use Structured Query Language (SQL) in Chap-
ters 7 and 8 to show how relational databases are
implemented and managed. Appendix M, Microsoft
Access Tutorial, provides a quick but comprehensive
guide to implementing an MS Access database. Ap-
pendixes B and C demonstrate the design of a da-
tabase that was fully implemented; these appendix-
es illustrate a wide range of implementation issues.
We had to deal with conflicting design goals: design
elegance, information requirements, and operation-
al speed. Therefore, we carefully audited the initial
design in Appendix B to check its ability to meet
end-user needs and establish appropriate implemen-
tation protocols. The result of this audit yielded the fi-
nal design developed in Appendix C. While relational
databases are still the appropriate database technolo-
gy to use in the vast majority of situations, Big Data
issues have created an environment in which special

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

requirements can call for the use of new, nonrela-
tional technologies. Chapter 14, Big Data Analyt-
ics and NoSQL, describes the types of data that are
appropriate for these new technologies and the ar-
ray of options available in these special cases. The
special issues encountered in an Internet database
environment are addressed in Chapter 15, Database
Connectivity and Web Technologies, and in Appen-
dix J, Web Database Development with ColdFusion.

Management

The final portion of the subtitle is Management. We
deal with database management issues in Chapter
10, Transaction Management and Concurrency
Control; Chapter 12, Distributed Database Man-
agement Systems; and Chapter 16, Database Ad-

ministration and Security. Chapter 11, Database 16 Database Administration and Security

Performance Tuning and Query Optimization, is a
valuable resource that illustrates how a DBMS man-
ages data retrieval. In addition, Appendix N, Cre-
ating a New Database Using Oracle 12¢, walks you
through the process of setting up a new database.

Teaching Database: A Matter of
Focus

Given the wealth of detailed coverage, instructors can “mix and match” chapters to produce the
desired coverage. Depending on where database courses fit into the curriculum, instructors may
choose to emphasize database design or database management. (See Figure 1.)

The hands-on nature of database design lends itself particularly well to class projects in which
students use instructor-selected software to prototype a system that they design for the end user.
Several end-of-chapter problems are sufficiently complex to serve as projects, or an instructor
may work with local businesses to give students hands-on experience. Note that some elements of
the database design track are also found in the database management track, because it is difficult
to manage database technologies that are not well understood.

The options shown in Figure 1 serve only as a starting point. Naturally, instructors will tailor
their coverage based on their specific course requirements. For example, an instructor may decide
to make Appendix I an outside reading assignment and make Appendix A a self-taught tutori-
al, and then use that time to cover client/server systems or object-oriented databases. The latter
choice would serve as a gateway to UML coverage.

Database Administration

Preface xvii

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 1

(1) Database Systems
(2) Data Models

(3) The Relational Database Model
(4) Entity Relationship (ER) Modeling
(6) Normalization of Database Tables
(7) Introduction to Structured Query Language (SQL)

\j \

Database Design and Implementation Focus Database Management Focus

(5) Advanced Data Modeling (10) Transaction Management and Concurrency Control
(8) Advanced SQL (11) Database Performance Tuning and Query Optimization
(9) Database Design (12) Distributed Database Management Systems
(A) Designing Databases with Visio Professional (13) Business Intelligence and Data Warehouses
(D) Converting an ER Model into a Database Structure (15) Database Connectivity and Web Technologies
(E) Comparison of ER Model Notations (16) Database Administration and Security
(H) Unified Modeling Language (UML) (F) Client/Server Systems
(14) Big Data Analytics and NoSQL (G) Object Oriented Databases
(15) Database Connectivity and Web Technologies

Supplementary Reading Supplementary Reading

(B) The University Lab: Conceptual Design (9) Database Design
(C) The University Lab: Conceptual Design Verification, (M) Microsoft Access Tutorial
Logical Design, and Implementation (N) Creating a New Database Using Oracle 12c

(M) Microsoft Access Tutorial (O) Data Warehouse Implementation Factors
(J) Web Database Development with ColdFusion (I) Databases in Electronic Commerce
(K) The Hierarchical Database Model (J) Web Database Development with ColdFusion
(L) The Network Database Model

Preface

XV

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Online Content boxes

draw attention to material

at www.cengagebrain.com
for this text and provide
ideas for incorporating
this content into the
course.

Notes highlights
important facts about
the concepts introduced
in the chapter.

A variety of four-color
figures, including

ER models and
implementations,
tables, and illustra-
tions, clearly illustrate
difficult concepts.

Online
Content

All of the databases
used to illustrate the
material in this chapter
(see the Data Files list
at the beginning of the
chapter) are available
at www.cengagebrain.
com. The database
names match the data-
base names shown in
the figures.

Note

A nullis no value at all. It does not mean a zero or a space. A null is created when you press
the Enter key or the Tab key to move to the next entry without making an entry of any kind.

Pressing the Spacebar creates a blank (or a space).

FIGURE 1.11 ILLUSTRATING METADATA WITH MICROSOFT SQL SERVER EXPRESS

Eie Efr ew Frojert [ebup TabieDedgne Taok ‘Wiedew Bl
A S L ey G EATHID A A -
e = e

= CIsaRATERADAL . - it 5

gty

Metalata

e

Text Features xix

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

S = | - A robust Summary at
Summa ry = 7 | the end of each chapter
= : ' - ties together the major
concepts and serves
+ Aninformation system is designed to help transform data into informationand to as a quick review for

manage both data and information. Thus, the database is a very important part of students.
the information system. Systems analysis is the process that establishes the need

for an information system and its extent. Systems development is the process of

creating an information system.

An alphabetic list of
Key Te rms Key Terms summarizes
important terms.
bottom-up design Database Life Cycle (DBLC) module coupling
boundaries database role physical design
centralized design decentralized design scope
clustered tables description of operations systems analysis
cohesivity differential backup systems development
computer-aided software full backup Systems Development

engineering (CASE) Life Cycle (SDLC)

top-down design

information system

conceptual design logical design

database development transaction log backup

minimal data rule

database fragment virtualization

module

Review Questions
challenge students to
apply the skills learned
in each chapter.

1. What is an information system? What is its purpose?

2. How do systems analysis and systems development fit into a discussion about infor-
mation systems?

3. What does the acronym SDLC mean, and what does an SDLC portray?
4. What does the acronym DBLC mean, and what does a DBLC portray?

5. Discuss the distinction between centralized and decentralized conceptual database
design.

it ; - | . Problems become

P ro b I ems .- 7 7 4 progressively more
: : o complex as students
draw on the lessons

In the following exercises, you will set up database connectivity using MS Excel. learned from the

completion of preceding
1. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC, problems.
and retrieve all of the AGENTS:.

2. Use MS Excel to connect to the Ch02_InsureCo MS Access database using ODBC,
and retrieve all of the CUSTOMERs.

xx Text Features

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MindTap® for Database Systems 12e
MindTap® combines learning tools—such as readings, multimedia, activities, and assessments—
into a singular learning path that guides students through the course. You’'ll find a full ebook as
well as a robust set of auto-gradable homework problems. Multiple-choice homework questions
developed from the end-of-chapter review questions confirm students’ understanding of core
concepts and key terms. Higher-level assignments enable students to practice database design
concepts in an automated environment, and chapter quizzes help prepare students for exams.
Students will also benefit from the chapter-opening videos created by the authors, as well as study
tools such as crossword puzzles and key-term flashcards.

MindTap” is designed to be fully integrated with any Learning Management System and can be
used as a stand-alone product or in conjunction with a print textbook.

Appendixes

Fifteen online appendixes provide additional material on a variety of important areas, such as
using Microsoft® Visio” and Microsoft” Access’, ER model notations, UML, object-oriented da-
tabases, databases and electronic commerce, and Adobe” ColdFusion®.

Database, SQL Script, and ColdFusion Files

The online materials for this book include all of the database structures and table contents used in
the text. For students using Oracle®, MySQL, and Microsoft SQL Server™, SQL scripts are included
to help students create and load all tables used in the SQL chapters (7 and 8). In addition, all Cold-
Fusion scripts used to develop the web interfaces in Appendix] are included.

Instructor Resources

Database Systems: Design, Implementation, and Management, Twelfth Edition, includes teaching
tools to support instructors in the classroom. The ancillary material that accompanies the text-
book is listed below. They are available on the web at www.cengagebrain.com.

Instructor’s Manual

The authors have created this manual to help instructors make their classes informative and inter-
esting. Because the authors tackle so many problems in depth, instructors will find the Instructor’s
Manual especially useful. The details of the design solution process are shown in the Instructors
Manual, as well as notes about alternative approaches that may be used to solve a particular problem.

SQL Script Files for Instructors

The authors have provided teacher’s SQL script files to allow instructors to cut and paste the
SQL code into the SQL windows. (Scripts are provided for Oracle, MySQL, and MS SQL Server.)
The SQL scripts, which have all been tested by Cengage Learning, are a major convenience for
instructors. You won't have to type in the SQL commands, and the use of the scripts eliminates
typographical errors that are sometimes difficult to trace.

ColdFusion Files for Instructors
The ColdFusion web development solutions are provided. Instructors have access to a menu-
driven system that allows teachers to show the code as well as its execution.

Additional Features xxi

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxii Additional Features

Databases

For many chapters, Microsoft” Access” instructor databases are available that include features
not found in the student databases. For example, the databases that accompany Chapters 7 and 8
include many of the queries that produce the problem solutions. Other Access databases, such as
the ones that accompany Chapters 3, 4, 5, and 6, include implementations of the design problem
solutions to allow instructors to illustrate the effect of design decisions. In addition, instructors
have access to all the script files for Oracle, MySQL, and MS SQL Server so that all the databases
and their tables can be converted easily and precisely.

Cengage Learning Testing Powered by Cognero

A flexible, online system that allows you to:

o Author, edit, and manage test bank content from multiple Cengage Learning solutions
o Create multiple test versions in an instant

o Deliver tests from your LMS, your classroom, or wherever you want

Start right away!
Cengage Learning Testing Powered by Cognero works on any operating system or browser.

o No special installs or downloads needed
o Create tests from school, home, the coffee shop—anywhere with Internet access
What will you find?

o Simplicity at every step. A desktop-inspired interface features drop-down menus and familiar,
intuitive tools that take you through content creation and management with ease.

o Full-featured test generator. Create ideal assessments with your choice of 15 question types
(including true/false, multiple-choice, opinion scale/Likert, and essay). Multi-language sup-
port, an equation editor, and unlimited metadata help ensure your tests are complete and
compliant.

o Cross-compatible capability. Import and export content into other systems.

PowerPoint® Presentations

Microsoft PowerPoint slides are included for each chapter. Instructors can use the slides in a vari-
ety of ways—for example, as teaching aids during classroom presentations or as printed handouts
for classroom distribution. Instructors can modify these slides or include slides of their own for
additional topics introduced to the class.

Figure Files
Figure files for solutions are presented in the Instructor’s Manual to allow instructors to create
their own presentations. Instructors can also manipulate these files to meet their particular needs.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Regardless of how many editions of this book are published, they will always rest on the solid
foundation created by the first edition. We remain convinced that our work has become successful
because that first edition was guided by Frank Ruggirello, a former Wadsworth senior editor and
publisher. Aside from guiding the booK’s development, Frank also managed to solicit the great
Peter Keen'’s evaluation (thankfully favorable) and subsequently convinced Peter Keen to write the
foreword for the first edition. Although we sometimes found Frank to be an especially demanding
taskmaster, we also found him to be a superb professional and a fine friend. We suspect Frank will
still see his fingerprints all over our current work. Many thanks.

A difficult task in rewriting a book is deciding what new approaches, topical coverage, and
changes to depth of coverage are appropriate for a product that has successfully weathered the
test of the marketplace. The comments and suggestions made by the book’s adopters, students,
and reviewers play a major role in deciding what coverage is desirable and how that coverage is
to be treated.

Some adopters became extraordinary reviewers, providing incredibly detailed and well-rea-
soned critiques even as they praised the book’s coverage and style. Dr. David Hatherly, a superb
database professional who is a senior lecturer in the School of Information Technology, Charles
Sturt University—Mitchell, Bathhurst, Australia, made sure that we knew precisely what issues led
to his critiques. Even better for us, he provided the suggestions that made it much easier for us
to improve the topical coverage in earlier editions. All of his help was given freely and without
prompting on our part. His efforts are much appreciated, and our thanks are heartfelt.

We also owe a debt of gratitude to Professor Emil T. Cipolla, who teaches at St. Mary College.
Professor Cipolla’s wealth of IBM experience turned out to be a valuable resource when we tack-
led the embedded SQL coverage in Chapter 8.

Every technical book receives careful scrutiny by several groups of reviewers selected by the
publisher. We were fortunate to face the scrutiny of reviewers who were superbly qualified to of-
fer their critiques, comments, and suggestions—many of which strengthened this edition. While
holding them blameless for any remaining shortcomings, we owe these reviewers many thanks
for their contributions:

Mubarak Banisaklher, Bethune
Cookman University

David Bell, Pacific Union College

Yurii Boreisha, Minnesota State
University, Moorhead

Laurie Crawford, Franklin
University

Mel Goetting, Shawnee State
University

Jeff Guan, University of Louisville

William Hochstettler, Franklin
University

Laurene Hutchinson, Louisiana State
University, Baton Rouge

Nitin Kale, University of Southern
California, Los Angeles

Gerald Karush, Southern
New Hampshire University

Michael Kelly, Community College
of Rhode Island

Timothy Koets, Grand Rapids
Community College

Klara Nelson, The University
of Tampa

Chiso Okafor, Roxbury Community
College

Brandon Olson, The College of
St. Scholastica

James Reneau, Shawnee State
University

Julio Rivera, University of Alabama
at Birmingham

Acknowledgments xxiii

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall leaning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xxiv Acknowledgments

Ruth Robins, University of Houston, Andrew Smith, Marian University

Downtown Antonis Stylianou, University of North
Samuel Sambasivam, Azusa Pacific Carolina, Charlotte

University Brian West, University of Louisiana at

Paul Seibert, North Greenville Lafayette

University Nathan White, McKendree University

Ronghua Shan, Dakota State

University

In some respects, writing books resembles building construction: When 90 percent of the work
seems done, 90 percent of the work remains to be done. Fortunately for us, we had a great team
on our side.

o Weare deeply indebted to Deb Kaufmann for her help and guidance. Deb has been everything
we could have hoped for in a development editor and more. Deb has been our editor for al-
most all the editions of this book, and the quality of her work shows in the attention to detail
and the cohesiveness and writing style of the material in this book.

o After writing so many books and twelve editions of this book, we know just how difficult
it can be to transform the authors’ work into an attractive product. The production team,
both at Cengage Learning (Nadia Saloom) and Cenveo Publisher Services (Saravanakumar
Dharman), have done an excellent job.

o We also owe Jennifer King and Ted Knight, our Content Developers, special thanks for their
ability to guide this book to a successful conclusion.

We also thank our students for their comments and suggestions. They are the reason for writing
this book in the first place. One comment stands out in particular: “I majored in systems for four
years, and I finally discovered why when I took your course” And one of our favorite comments
by a former student was triggered by a question about the challenges created by a real-world in-
formation systems job: “Doc, it’s just like class, only easier. You really prepared me well. Thanks!”

Special thanks go to a very unique and charismatic gentleman. For over 20 years, Peter Rob has
been the driving force behind the creation and evolution of this book. This book originated as a
product of his drive and dedication to excellence. For over 22 years, he was the voice of Database
Systems and the driving force behind its advancement. We wish him peace in his retirement, time
with his loved ones, and luck on his many projects.

Last, and certainly not least, we thank our families for their solid support at home. They gra-
ciously accepted the fact that during more than a year’s worth of rewriting, there would be no free
weekends, rare free nights, and even rarer free days. We owe you much, and the dedications we
wrote are but a small reflection of the important space you occupy in our hearts.

Carlos Coronel and Steven Morris

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Database Concepts

1 Database Systems

2 Data Models

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall leaning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Database Systems

In this chapter, you will learn:

« The difference between data and information

« What a database is, the various types of databases, and why they are valuable assets for
decision making

« The importance of database design

« How modern databases evolved from file systems

« About flaws in file system data management

+ The main components of the database system

« The main functions of a database management system (DBMS)

P (GVI ew Organizations use data to keep track of their day-to-day operations. Such data is used to
generate information, which in turn is the basis for good decisions. Data is likely to be
managed most efficiently when it is stored in a database. Databases are involved in almost
all facets and activities of our daily lives: from school, to work, to medical care, govern-
ment, nonprofit organizations, and houses of worship. In this chapter, you will learn what
a database is, what it does, and why it yields better results than other data management
methods. You will also learn about various types of databases and why database design is
so important.

Databases evolved from computer file systems. Although file system data management
is now largely outmoded, understanding the characteristics of file systems is important
because file systems are the source of serious data management limitations. In this chap-
ter, you will also learn how the database system approach helps eliminate most of the
shortcomings of file system data management.

Data Files and Available Formats

MS Access] Oracle | MSSOL | MySOL MS Access] Oracle | MSSOL | MySOL
CHO1_Text v v v v CHO1_Problems v v v v
CHO1_Design_Example v v v v

Data Files Available on cengagebrain.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 3

1-1 Why Databases?

So, why do we need databases? In today’s world, data is ubiquitous (abundant, global, every-
where) and pervasive (unescapable, prevalent, persistent). From birth to death, we generate
and consume data. The trail of data starts with the birth certificate and continues all the way
to a death certificate (and beyond!). In between, each individual produces and consumes
enormous amounts of data. As you will see in this book, databases are the best way to store
and manage data. Databases make data persistent and shareable in a secure way. As you look
at Figure 1.1, can you identify some of the data generated by your own daily activities?

FIGURE 1.1 THE PERVASIVE NATURE OF DATABASES

A Day In Susan’s Life

See how many databases she interacts with each day

Before leaving for work, On her lunch break, After work, Susan At night, she plans for a trip Then she makes a few
Susan checks her she picks up her goes to the grocery and buys airline tickets and online purchases
Facebook and prescription at the store hotel reservations online
Twitter accounts pharmacy

A
Lad
Where is the data about the Where is the pharmacy Where is the product Where does the online Where are the product
friends and groups stored? inventory data stored? data stored? travel website get the and stock data stored?
q airline and hotel data from?
Where are the “likes” stored What data about each Is the product quantity in Where does the system get
and what would they be product will be in the stock updated at checkout? What customer data would the data to generate product
used for? inventory data? . . be kept by the website? “recommendations” to the
Does she pay with a credit G aE?

What data is kept about card? Where would the customer

each customer and where data be stored? Vherentouldleredittcard

is it stored?

information be stored?

= =
=

Data is not only ubiquitous and pervasive, it is essential for organizations to survive
and prosper. Imagine trying to operate a business without knowing who your customers
are, what products you are selling, who is working for you, who owes you money, and
to whom you owe money. All businesses have to keep this type of data and much more.
Just as important, they must have that data available to decision makers when necessary.
It can be argued that the ultimate purpose of all business information systems is to help
businesses use information as an organizational resource. At the heart of all of these
systems are the collection, storage, aggregation, manipulation, dissemination, and man-
agement of data.

Depending on the type of information system and the characteristics of the busi-
ness, this data could vary from a few megabytes on just one or two topics to terabytes
covering hundreds of topics within the business’s internal and external environment.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall leaning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Part1 Database Concepts

data

Raw facts, or facts that
have not yet been
processed to reveal their
meaning to the end user.

information

The result of processing
raw data to reveal its
meaning. Information
consists of transformed
data and facilitates
decision making.

Telecommunications companies, such as Sprint and AT&T, are known to have systems
that keep data on trillions of phone calls, with new data being added to the system at
speeds up to 70,000 calls per second! Not only do these companies have to store and man-
age immense collections of data, they have to be able to find any given fact in that data
quickly. Consider the case of Internet search staple Google. While Google is reluctant to
disclose many details about its data storage specifications, it is estimated that the company
responds to over 91 million searches per day across a collection of data that is several
terabytes in size. Impressively, the results of these searches are available almost instantly.

How can these businesses process this much data? How can they store it all, and then
quickly retrieve just the facts that decision makers want to know, just when they want to
know it? The answer is that they use databases. Databases, as explained in detail through-
out this book, are specialized structures that allow computer-based systems to store,
manage, and retrieve data very quickly. Virtually all modern business systems rely on
databases. Therefore, a good understanding of how these structures are created and their
proper use is vital for any information systems professional. Even if your career does not
take you down the amazing path of database design and development, databases will be a
key component of the systems that you use. In any case, you will probably make decisions
in your career based on information generated from data. Thus, it is important that you
know the difference between data and information.

1-2 Data versus Information

To understand what drives database design, you must understand the difference between
data and information. Data consists of raw facts. The word raw indicates that the facts
have not yet been processed to reveal their meaning. For example, suppose that a uni-
versity tracks data on faculty members for reporting to accrediting bodies. To get the
data for each faculty member into the database, you would provide a screen to allow for
convenient data entry, complete with drop-down lists, combo boxes, option buttons, and
other data-entry validation controls. Figure 1.2(a) shows a simple data-entry form from
a software package named Sedona. When the data is entered into the form and saved,
it is placed in the underlying database as raw data, as shown in Figure 1.2(b). Although
you now have the facts in hand, they are not particularly useful in this format. Reading
through hundreds of rows of data for faculty members does not provide much insight
into the overall makeup of the faculty. Therefore, you transform the raw data into a data
summary like the one shown in Figure 1.2(c). Now you can get quick answers to questions
such as “What percentage of the faculty in the Information Systems (INFS) department
are adjuncts?” In this case, you can quickly determine that 20 percent of the INFS faculty
members are adjunct faculty. Because graphics can enhance your ability to quickly extract
meaning from data, you show the data summary pie chart in Figure 1.2(d).

Information is the result of processing raw data to reveal its meaning. Data process-
ing can be as simple as organizing data to reveal patterns or as complex as making fore-
casts or drawing inferences using statistical modeling. To reveal meaning, information
requires context. For example, an average temperature reading of 105 degrees does not
mean much unless you also know its context: Is this reading in degrees Fahrenheit or
Celsius? Is this a machine temperature, a body temperature, or an outside air tempera-
ture? Information can be used as the foundation for decision making. For example, the
data summary for the faculty can provide accrediting bodies with insights that are useful
in determining whether to renew accreditation for the university.

Keep in mind that raw data must be properly formatted for storage, processing, and
presentation. For example, dates might be stored in Julian calendar formats within the data-
base, but displayed in a variety of formats, such as day-month-year or month/day/year, for

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

FIGURE 1.2 TRANSFORMING RAW DATA INTO INFORMATION

Database Systems 5

b) Raw data

a) Data entry screen

Middle Tennessee State University P Crr—

i | s | My gganins | ummicn | Wombsii | sz i | wobbgoe | Sobvrnint || 10 tukots Unsay o Bngn W kL

e e |
E |

06 AT 3ppng Setiact 12 M1 12 Nemzer O

Watries 117
1e= T slzterametzl

Memniser Dofad $1a01s: Caeng g 1 detss nere
A ek Yo cvasaa Vond 1 2x 04 e e

I 7 snge e
came zs Momer 1D ORS00 2502 ALY EhARECE Sl in e

Frstnams arinite - |
rschwmnl® C pamapn O S g

Sl | p—
Lt i I

I Charbesd [lactve [l T ——

[———— =
Degartmant* | E
™ | |
G - Hga Dogree =
= |

R

[| —

! ar T T | =

¢) Information in summary format

R e T
A=l o

3

L.
200 SR

d) Information in graphical format

Rank COUNT “iINFS TOTICOL %ICOL. TOT. %/COL. FAC. O Adjunct O sssistant Frofessor
i] i i F W Aszociate Protessor O Instrustar
[Professar

8.00% 28 T.14% 1.31%

Assistant Professor 2

Associate Professor 9 36.00% 37 24.32% 5.88%
Instructor 2 8.00% 13 11.11% 131%
Professor s 28.00% 47 14.89% 458%

different purposes. Respondents’ yes/no responses might need to be converted to a Y/N or
0/1 format for data storage. More complex formatting is required when working with com-
plex data types, such as sounds, videos, or images.

In this “information age,” production of accurate, relevant, and timely information is the
key to good decision making. In turn, good decision making is the key to business survival in
a global market. We are now said to be entering the “knowledge age

Data is the foundation of information, which is the bedrock of knowledge—that
is, the body of information and facts about a specific subject. Knowledge implies
familiarity, awareness, and understanding of information as it applies to an envi-
ronment. A key characteristic of knowledge is that “new” knowledge can be derived
from “old” knowledge.

Let’s summarize some key points:

« Data constitutes the building blocks of information.

o Information is produced by processing data.

o Information is used to reveal the meaning of data.

o Accurate, relevant, and timely information is the key to good decision making.

« Good decision making is the key to organizational survival in a global environment.

'Peter Drucker coined the phrase “knowledge worker” in 1959 in his book Landmarks of Tomorrow. In 1994,
Esther Dyson, George Keyworth, and Dr. Alvin Toffler introduced the concept of the “knowledge age”

knowledge

The body of information
and facts about a
specific subject.
Knowledge implies
familiarity, awareness,
and understanding of
information as it applies
to an environment. A
key characteristic is that
new knowledge can

be derived from old
knowledge.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6 Part1 Database Concepts

data management
A process that focuses
on data collection,
storage, and retrieval.
Common data
management functions
include addition,
deletion, modification,
and listing.

database

A shared, integrated
computer structure that
houses a collection of
related data. A database
contains two types of
data: end-user data (raw
facts) and metadata.

metadata

Data about data; that
is, data about data
characteristics and
relationships. See also
data dictionary.

database
management
system (DBMS)

The collection of
programs that manages
the database structure
and controls access to
the data stored in the
database.

Timely and useful information requires accurate data. Such data must be properly gen-
erated and stored in a format that is easy to access and process. In addition, like any basic
resource, the data environment must be managed carefully. Data management is a disci-
pline that focuses on the proper generation, storage, and retrieval of data. Given the crucial
role that data plays, it should not surprise you that data management is a core activity for
any business, government agency, service organization, or charity.

1-3 Introducing the Database

Efficient data management typically requires the use of a computer database. A database isa
shared, integrated computer structure that stores a collection of the following:

o End-user data—that is, raw facts of interest to the end user

« Metadata, or data about data, through which the end-user data is integrated and
managed

The metadata describes the data characteristics and the set of relationships that links
the data found within the database. For example, the metadata component stores infor-
mation such as the name of each data element, the type of values (numeric, dates, or text)
stored on each data element, and whether the data element can be left empty. The meta-
data provides information that complements and expands the value and use of the data.
In short, metadata presents a more complete picture of the data in the database. Given
the characteristics of metadata, you might hear a database described as a “collection of
self-describing data”

A database management system (DBMS) is a collection of programs that manages
the database structure and controls access to the data stored in the database. In a sense,
a database resembles a very well-organized electronic filing cabinet in which powerful
software (the DBMS) helps manage the cabinet’s contents.

1-3a Role and Advantages of the DBMS

The DBMS serves as the intermediary between the user and the database. The database
structure itself is stored as a collection of files, and the only way to access the data in
those files is through the DBMS. Figure 1.3 emphasizes the point that the DBMS presents
the end user (or application program) with a single, integrated view of the data in the
database. The DBMS receives all application requests and translates them into the com-
plex operations required to fulfill those requests. The DBMS hides much of the database’s
internal complexity from the application programs and users. The application program
might be written by a programmer using a programming language, such as Visual Basic.
NET, Java, or C#, or it might be created through a DBMS utility program.

Having a DBMS between the end user’s applications and the database offers some
important advantages. First, the DBMS enables the data in the database to be shared
among multiple applications or users. Second, the DBMS integrates the many different
users’ views of the data into a single all-encompassing data repository.

Because data is the crucial raw material from which information is derived, you must
have a good method to manage such data. As you will discover in this book, the DBMS
helps make data management more efficient and effective. In particular, a DBMS pro-
vides these advantages:

o Improved data sharing. The DBMS helps create an environment in which end users
have better access to more and better-managed data. Such access makes it possible for
end users to respond quickly to changes in their environment.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

Database Systems 7

FIGURE 1.3 THE DBMS MANAGES THE INTERACTION BETWEEN THE END USER
AND THE DATABASE

End users

Database structure

Application
request

(Database
management system)

View of data
Integrated
End users

fivd

o Improved data security. The more users access the data, the greater the risks of data
security breaches. Corporations invest considerable amounts of time, effort, and
money to ensure that corporate data is used properly. A DBMS provides a framework
for better enforcement of data privacy and security policies.

request

Better data integration. Wider access to well-managed data promotes an inte-
grated view of the organization’s operations and a clearer view of the big picture. It
becomes much easier to see how actions in one segment of the company affect other
segments.

Minimized data inconsistency. Data inconsistency exists when different versions
of the same data appears in different places. For example, data inconsistency
exists when a company’s sales department stores a sales representative’s name as
Bill Brown and the company’s personnel department stores that same person’s
name as William G. Brown, or when the company’s regional sales office shows the
price of a product as $45.95 and its national sales office shows the same product’s
price as $43.95. The probability of data inconsistency is greatly reduced in a prop-
erly designed database.

Improved data access. The DBMS makes it possible to produce quick answers to ad hoc
queries. From a database perspective, a query is a specific request issued to the DBMS
for data manipulation—for example, to read or update the data. Simply put, a query
is a question, and an ad hoc query is a spur-of-the-moment question. The DBMS
sends back an answer (called the query result set) to the application. For example,
when dealing with large amounts of sales data, end users might want quick answers to
questions (ad hoc queries). Some examples include the following:

— What was the dollar volume of sales by product during the past six months?

- What is the sales bonus figure for each of our salespeople during the past three
months?

- How many of our customers have credit balances of $3,000 or more?

’ Metadat;\

Customers
Invoices

End-user
data

data inconsistency
A condition in which
different versions of the
same data yield different
(inconsistent) results.

query

A question or task

asked by an end user
of a database in the
form of SQL code. A
specific request for data
manipulation issued

by the end user or the
application to the DBMS.

ad hoc query
A“spur-of-the-moment”
question.

query result set

The collection of data
rows returned by a
query.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Part1 Database Concepts

data quality

A comprehensive
approach to ensuring
the accuracy, validity,
and timeliness of data.

single-user database
A database that supports
only one user at a time.

desktop database
A single-user database
that runs on a personal
computer.

multiuser database
A database that supports
multiple concurrent
users.

workgroup database
A multiuser database
that usually supports
fewer than 50 users or

is used for a specific
department in an
organization.

enterprise database
The overall company
data representation,
which provides support
for present and expected
future needs.

centralized database
A database located at a
single site.

distributed database
A logically related
database that is stored in
two or more physically
independent sites.

cloud database
A database that

is created and
maintained using
cloud services, such
as Microsoft Azure
or Amazon AWS.

general-purpose
database

A database that contains a
wide variety of data used
in multiple disciplines.

o Improved decision making. Better-managed data and improved data access make
it possible to generate better-quality information, on which better decisions are
based. The quality of the information generated depends on the quality of the
underlying data. Data quality is a comprehensive approach to promoting the accu-
racy, validity, and timeliness of the data. While the DBMS does not guarantee data
quality, it provides a framework to facilitate data quality initiatives. Data quality
concepts will be covered in more detail in Chapter 16, Database Administration
and Security.

o Increased end-user productivity. The availability of data, combined with the tools
that transform data into usable information, empowers end users to make quick,
informed decisions that can make the difference between success and failure in
the global economy.

The advantages of using a DBMS are not limited to the few just listed. In fact, you
will discover many more advantages as you learn more about the technical details of
databases and their proper design.

1-3b Types of Databases

A DBMS can be used to build many different types of databases. Each database stores a
particular collection of data and is used for a specific purpose. Over the years, as tech-
nology and innovative uses of databases have evolved, different methods have been used
to classify databases. For example, databases can be classified by the number of users
supported, where the data is located, the type of data stored, the intended data usage, and
the degree to which the data is structured.

The number of users determines whether the database is classified as single user or
multiuser. A single-user database supports only one user at a time. In other words, if
user A is using the database, users B and C must wait until user A is done. A single-user
database that runs on a personal computer is called a desktop database. In contrast,
a multiuser database supports multiple users at the same time. When the multiuser
database supports a relatively small number of users (usually fewer than 50) or a specific
department within an organization, it is called a workgroup database. When the data-
base is used by the entire organization and supports many users (more than 50, usually
hundreds) across many departments, the database is known as an enterprise database.

Location might also be used to classify the database. For example, a database that
supports data located at a single site is called a centralized database. A database
that supports data distributed across several different sites is called a distributed
database. The extent to which a database can be distributed and the way in which
such distribution is managed are addressed in detail in Chapter 12, Distributed Data-
base Management Systems.

Both centralized and decentralized (distributed) databases require a well-defined
infrastructure (hardware, operating systems, network technologies, etc.) to implement
and operate the database. Typically, the infrastructure is owned and maintained by the
organization that creates and operates the database. But in recent years, the use of cloud
databases has been growing in popularity. A cloud database is a database that is created
and maintained using cloud data services, such as Microsoft Azure or Amazon AWS.
These services, provided by third-party vendors, provide defined performance measures
(data storage capacity, required throughput, and availability) for the database, but do not
necessarily specify the underlying infrastructure to implement it. The data owner does
not have to know, or be concerned about, what hardware and software is being used
to support their database. The performance capabilities can be renegotiated with the

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

cloud provider as the business demands on the database change. For example, during
the 2012 presidential election in the United States, the Obama campaign used a cloud
database hosted on infrastructure capabilities purchased from Amazon. The campaign
did not have to buy, install, configure, or maintain any hardware, operating systems, or
network devices. It simply purchased storage and processing capacity for its data and
applications. As the demands on the database increased, additional processing and stor-
age capabilities could be purchased as needed.

In some contexts, such as research environments, a popular way of classifying data-
bases is according to the type of data stored in them. Using this criterion, databases
are grouped into two categories: general-purpose and discipline-specific databases.
General-purpose databases contain a wide variety of data used in multiple disci-
plines—for example, a census database that contains general demographic data and
the LexisNexis and ProQuest databases that contain newspaper, magazine, and journal
articles for a variety of topics. Discipline-specific databases contain data focused on
specific subject areas. The data in this type of database is used mainly for academic
or research purposes within a small set of disciplines. Examples of discipline-specific
databases include financial data stored in databases such as CompuStat or CRSP
(Center for Research in Security Prices), geographic information system (GIS) data-
bases that store geospatial and other related data, and medical databases that store
confidential medical history data.

The most popular way of classifying databases today, however, is based on how
they will be used and on the time sensitivity of the information gathered from them.
For example, transactions such as product or service sales, payments, and supply
purchases reflect critical day-to-day operations. Such transactions must be recorded
accurately and immediately. A database that is designed primarily to support a com-
pany’s day-to-day operations is classified as an operational database, also known
as an online transaction processing (OLTP) database, transactional database,
or production database. In contrast, an analytical database focuses primarily
on storing historical data and business metrics used exclusively for tactical or stra-
tegic decision making. Such analysis typically requires extensive “data massaging”
(data manipulation) to produce information on which to base pricing decisions,
sales forecasts, market strategies, and so on. Analytical databases allow the end user
to perform advanced analysis of business data using sophisticated tools.

Typically, analytical databases comprise two main components: a data warehouse and
an online analytical processing front end. The data warehouse is a specialized data-
base that stores data in a format optimized for decision support. The data warehouse
contains historical data obtained from the operational databases as well as data from
other external sources. Online analytical processing (OLAP) is a set of tools that work
together to provide an advanced data analysis environment for retrieving, processing,
and modeling data from the data warehouse. In recent times, this area of database appli-
cation has grown in importance and usage, to the point that it has evolved into its own
discipline: business intelligence. The term business intelligence describes a compre-
hensive approach to capture and process business data with the purpose of generating
information to support business decision making. Chapter 13, Business Intelligence and
Data Warehouses, covers this topic in detail.

Databases can also be classified to reflect the degree to which the data is structured.
Unstructured data is data that exists in its original (raw) state—that is, in the format
in which it was collected. Therefore, unstructured data exists in a format that does not
lend itself to the processing that yields information. Structured data is the result of for-
matting unstructured data to facilitate storage, use, and the generation of information.
You apply structure (format) based on the type of processing that you intend to perform

Database Systems 9

discipline-specific
database

A database that contains
data focused on specific
subject areas.

operational
database

A database designed
primarily to support a
company’s day-to-day
operations. Also known as
a transactional database,
OLTP database, or
production database.

online transaction
processing (OLTP)
database

See operational database.

transactional
database
See operational database.

production database
See operational database.

analytical database
A database focused
primarily on storing
historical data and
business metrics used
for tactical or strategic
decision making.

data warehouse

A specialized database
that stores historical
and aggregated data in
a format optimized for
decision support.

online analytical
processing (OLAP)
A set of tools that
provide advanced data
analysis for retrieving,
processing, and
modeling data from the
data warehouse.

business intelligence
A set of tools and
processes used to
capture, collect, integrate,
store, and analyze data to
support business decision
making.

unstructured data
Data that exists in its
original, raw state; that is,
in the format in which it
was collected.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10 Part1

structured data
Data that has been
formatted to facilitate
storage, use, and
information generation.

semistructured data
Data that has already
been processed to some
extent.

Extensible Markup
Language (XML)

A metalanguage

used to represent

and manipulate data
elements. Unlike other
markup languages,
XML permits the
manipulation of a
document’s data
elements.

TABLE 1.1

Database Concepts

on the data. Some data might not be ready (unstructured) for some types of processing,
but they might be ready (structured) for other types of processing. For example, the data
value 37890 might refer to a zip code, a sales value, or a product code. If this value rep-
resents a zip code or a product code and is stored as text, you cannot perform mathemat-
ical computations with it. On the other hand, if this value represents a sales transaction,
it must be formatted as numeric.

To further illustrate the concept of structure, imagine a stack of printed paper
invoices. If you want to merely store these invoices as images for future retrieval and
display, you can scan them and save them in a graphic format. On the other hand, if
you want to derive information such as monthly totals and average sales, such graphic
storage would not be useful. Instead, you could store the invoice data in a (structured)
spreadsheet format so that you can perform the requisite computations. Actually, most
data you encounter is best classified as semistructured. Semistructured data has
already been processed to some extent. For example, if you look at a typical webpage,
the data is presented in a prearranged format to convey some information. The data-
base types mentioned thus far focus on the storage and management of highly struc-
tured data. However, corporations are not limited to the use of structured data. They
also use semistructured and unstructured data. Just think of the valuable information
that can be found on company emails, memos, and documents such as procedures,
rules, and webpages. Unstructured and semistructured data storage and management
needs are being addressed through a new generation of databases known as XML data-
bases. Extensible Markup Language (XML) is a special language used to represent
and manipulate data elements in a textual format. An XML database supports the
storage and management of semistructured XML data.

Table 1.1 compares the features of several well-known database management systems.

TYPES OF DATABASES

PRODUCT

SINGLE
USER

NUMBER OF USERS

DATA LOCATION DATA USAGE

MULTIUSER
WORKGROUP | ENTERPRISE

CENTRALIZED A DISTRIBUTED A OPERATIONAL A ANALYTICAL

MS Access X X X X

MS SQL Server | X3 X X X X X X X
IBM DB2 X3 X X X X X X X
MySQL X X X X X X X X
Oracle RDBMS | X3 X X X X X X X

XML database

A database system that
stores and manages
semistructured XML data.

social media

Web and mobile
technologies that enable
“anywhere, anytime, always
on” human interactions.

With the emergence of the World Wide Web and Internet-based technologies as the
basis for the new “social media” generation, great amounts of data are being stored
and analyzed. Social media refers to web and mobile technologies that enable “any-
where, anytime, always on” human interactions. Websites such as Google, Facebook,
Twitter, and LinkedIn capture vast amounts of data about end users and consumers.
This data grows exponentially and requires the use of specialized database systems.
For example, as of 2015, over 500 million tweets were posted every day on Twitter,
and that number continues to grow. As a result, the MySQL database Twitter was
using to store user content was frequently overloaded by demand.?* Facebook faces

*Vendor offers single-user/personal DBMS version.
Swww.internetlivestats.com/twitter-statistics/

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

similar challenges. With over 500 terabytes of data coming in each day, it stores over
100 petabytes of data in a single data storage file system. From this data, its database
scans over 200 terabytes of data each hour to process user actions, including status
updates, picture requests, and billions of “Like” actions.* Over the past few years,
this new breed of specialized database has grown in sophistication and widespread
usage. Currently, this new type of database is known as a NoSQL database. The term
NoSQL (Not only SQL) is generally used to describe a new generation of database
management systems that is not based on the traditional relational database model.
NoSQL databases are designed to handle the unprecedented volume of data, variety
of data types and structures, and velocity of data operations that are characteristic
of these new business requirements. You will learn more about this type of system in
Chapter 2, Data Models.

This section briefly mentioned the many different types of databases. As you learned
earlier, a database is a computer structure that houses and manages end-user data. One
of the first tasks of a database professional is to ensure that end-user data is properly
structured to derive valid and timely information. For this, good database design is
essential.

1-4 Why Database Design is Important

A problem that has evolved with the use of personal productivity tools such as spread-
sheets and desktop database programs is that users typically lack proper data-modeling
and database design skills. People naturally have a “narrow” view of the data
in their environment. For example, consider a student’s class schedule. The sched-
ule probably contains the student’s identification number and name, class code, class
description, class credit hours, class instructor name, class meeting days and times,
and class room number. In the mind of the student, these various data items compose
a single unit. If a student organization wanted to keep a record of the schedules of its
members, an end user might make a spreadsheet to store the schedule information.
Even if the student makes a foray into the realm of desktop databases, he or she is
likely to create a structure composed of a single table that mimics his or her view of
the schedule data. As you will learn in the coming chapters, translating this type of
narrow view of data into a single two-dimensional table structure is a poor database
design choice.

Database design refers to the activities that focus on the design of the database
structure that will be used to store and manage end-user data. A database that meets all
user requirements does not just happen; its structure must be designed carefully. In fact,
database design is such a crucial aspect of working with databases that most of this book
is dedicated to the development of good database design techniques. Even a good DBMS
will perform poorly with a badly designed database.

Data is one of an organization’s most valuable assets. Data on customers, employees,
orders, and receipts is all vital to the existence of a company. Tracking key growth and
performance indicators are also vital to strategic and tactical plans to ensure future suc-
cess; therefore, an organization’s data must not be handled lightly or carelessly. Thorough
planning to ensure that data is properly used and leveraged to give the company the most
benefit is just as important as proper financial planning to ensure that the company gets
the best use from its financial resources.

*Josh Constine, “How big is Facebook’s data? 2.5 billion pieces of content and 500+ terabytes of data ingested
every day, Tech Crunch, August 22, 2012, http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-
billion-pieces-of-content-and-500-terabytes-ingested-every-day/

Database Systems 11

NoSQL

A new generation of
database management
systems that is not
based on the traditional
relational database
model.

database design

The process that yields
the description of the
database structure

and determines the
database components.
The second phase of the
Database Life Cycle.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12 Part1 Database Concepts

Because current-generation DBMSs are easy to use, an unfortunate side effect is
that many computer-savvy business users gain a false sense of confidence in their
ability to build a functional database. These users can effectively navigate the creation
of database objects, but without the proper understanding of database design, they
tend to produce flawed, overly simplified structures that prevent the system from
correctly storing data that corresponds to business realities, which produces incom-
plete or erroneous results when the data is retrieved. Consider the data shown in
Figure 1.4, which illustrates the efforts of an organization to keep records about its
employees and their skills. Some employees have not passed a certification test in
any skill, while others have been certified in several skills. Some certified skills are
shared by several employees, while other skills have no employees that hold those
certifications.

FIGURE 1.4 EMPLOYEE SKILLS CERTIFICATION IN A POOR DESIGN

How to produce How to count how Is Basic Database .
Why are there . . . What if an employee
ks i an alphabetical many employees are Manipulation the acquires a fourth
blan S(Ijn ro?ws listing of certified in Basic same as Basic DB cqertification?
o el Uitk employees? Database Manipulation? Manipulation? ;
Do we add
l l another column?

10] EMurn | Marme [Title [HireDate | Skilll [Skiln Date | Skillz | SkillZDate | Skill3 [Skill3Date |

1/02345 Brian Dates DEA 2/14/1995 Basic Database Management 21142002 Advanced Database Management | 2/14/2005 Basic Web Design 8/9/2003

2|08273 Marco Bienz Analyst 7/2B/2006 Basic Web Design 3/8/2009 Advance Process Modeling 8192012

306234 Jasmine Patel Programimer 8/10/2005 Basic Web Design 8/10/2007 | Advanced C# programming 8/10/2007] Basic DB manipulstion || 1/20/2012

403373 Franklin Johnson, Jr Furchasing Agent 31572002 Advanced Spreadshests B/20/2011

513567 Almond, Robert Analyst 9/30/2012 Basic Process Modeling 9/30/2014 | Basic Database Design 5/23/2015

B 10282 Richardson, Amanda Clerk 471172011

709382 Susan Mathis Database Programmer | 8/2/2010 Basic DB Design 8&&012’ Basic Database Manipulation 8/2/2012 Advanced DB Manipulation S/2013

8 14311 Duong, Lee Frogramrmer 97172014 Basic Web Design 9142016

9 Master Database Programming

10 Basic Spreadsheets

1109002 Wade Gaither Clerk 5/20/2010 Advanced Spreadshests SHE/2013| Basic Web Design SAE2013

12113363 Raymond F. Matthews |Programrmer 3A12/2012 Basic C# Programrming 320014

1309283 Chavez, Juan Clerk 72010

14|04893 Patricia Richards DEA 6/11/2004 Advanced Database Management | B/11/2006 Advanced Database Manipulation | 92002012

1513932 Lee, Megan Prograrrner 952052013

Based on this storage of the data, notice the following problems:

o It would be difficult, if not impossible, to produce an alphabetical listing of employees
based on their last names.

o To determine how many employees are certified in Basic Database Manipula-
tion, you would need a program that counts the number of those certifications
recorded in Skilll and places it in a variable. Then the count of those certifications
in Skill2 could be calculated and added to the variable. Finally, the count of those
certifications in Skill3 could be calculated and added to the variable to produce
the total.

« If you redundantly store the name of a skill with each employee who is certified in
that skill, you run the risk of spelling the name differently for different employees. For
example, the skill Basic Database Manipulation is also entered as Basic DB Manipula-
tion for at least one employee in Figure 1.4, which makes it difficult to get an accurate
count of employees who have the certification.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 13

o The structure of the database will have to be changed by adding more columns to the
table when an employee is certified in a fourth skill. It will have to be modified again
if an employee is certified in a fifth skill.

Contrast this poor design with that shown in Figure 1.5, where the design has been
improved by decomposing the data into three related tables. These tables contain all of
the same data that was represented in Figure 1.4, but the tables are structured so that you
can easily manipulate the data to view it in different ways and answer simple questions.

FIGURE 1.5 EMPLOYEE SKILL CERTIFICATIONS IN A GOOD DESIGN

Database name: Ch01_Text

Table name: EMPLOYEE Table name: CERTIFIED
| Employee_|D ‘ Ernployee FName | Employee_LName | Ernployee HireDate ‘ Employee_Title | Ernployee D | Skl D | Cedified Date |
02345 Johnny Jones 2/14/1995 DBA 02345 100 2/14/2002
03373 Franklin Johnson 315/2002 Purchasing Agent 02345 it} 8/9/2003
04893 Patricia Richards 6/11/2004 DBA 02345 180 21472005
06234 Jasmine Patel 8/10/2005 Programmer 03373 120 20201t
08273 Marco Bienz 7/28/2008 Analyst 04853 180 641172006
04593 220 972072012
0so02 Ben Joiner 5/20/2010 Clerk 06238 110 B10/2007
03283 Juan Chavez /472010 Clerk 05734 P 2100007
09352 Jessica Johnson 8/2/2010 Database Programmer 06234 210 112072012
10252 Amanda Richardson 471172011 Clerk 08273 110 3/8/2009
13383 Rayrnond Matthews 31272012 Programmer 08273 190 8192012
13567 Robert Alrnond 9/30/2012 Analyst 09002 10 5/16/2013
13932 Megan Lee 9/29/2013 Progrararmer 09002 120 5162013
14311 Lee Duang 9/1/2014 Programmer 09352 140 8422012
09352 210 87272012
09382 220 51172013
13383 170 31272014
13667 130 973072014
13567 140 52372015
14311 110 SM2016
Table name: SKILL
[SKilID] Skill_Mama [Skill_Description
100| Basic Database Managerment Create and manage database user accounts.
110/ Basic VWehb Design Create and maintain HTML and CS5 documents
120/ Advanced Spreadsheets Usze of advanced functions, user-defined functions, and macroing.
130 Basic Process Modeling Create core business process models using standard libraries.
140 Basic Database Design Create simple data models.
150/ Master Database Programming Create integrated trigger and procedure packages for a distributed environment.
160/ Basic Spreadsheets Create single tab worksheets with basic formulas
170 Basic C# Prograrming Create single-tier data aware modules.
180 Advanced Database Management |Manage Database Server Clusters.
190/ Advance Process Modeling Evaluate and Redesign cross-functional internal and external business processes.
200 Advanced C# Programming Create multi-tier applications using multi-threading
210 Basic Database Manipulation Create simple data retrieval and manipulation statements in SGL.
220 Advanced Database Manipulation | Use of advanced data manipulation methods for multi-table inserts, set operations, and correlated subgueries.

With the improved structure in Figure 1.5, you can use simple commands in a standard
data manipulation language to do the following:

+ Produce an alphabetical listing of employees by last name:
SELECT * FROM EMPLOYEE ORDER BY EMPLOYEE_LNAME;
 Determine how many employees are certified in Basic Database Manipulation:

SELECT Count(*)
FROM SKILL JOIN CERTIFIED ON SKILL.SKILL_ID = CERTIFIED.SKILL_ID
WHERE SKILL_NAME = ‘Basic Database Manipulation’;

You will learn more about these commands in Chapter 7, Introduction to Structured
Query Language.

Note that because each skill name is stored only once, the names cannot be spelled
or abbreviated differently for different employees. Also, the additional certification

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14 Part1

Database Concepts

of an employee with a fourth or fifth skill does not require changes to the structure
of the tables.

Proper database design requires the designer to identify precisely the database’s
expected use. Designing a transactional database emphasizes accurate and con-
sistent data and operational speed. Designing a data warehouse database empha-
sizes the use of historical and aggregated data. Designing a database to be used in a
centralized, single-user environment requires a different approach from that used in
the design of a distributed, multiuser database. This book emphasizes the design of
transactional, centralized, single-user, and multiuser databases. Chapters 12 and 13
also examine critical issues confronting the designer of distributed and data warehouse
databases.

Designing appropriate data repositories of integrated information using the two-
dimensional table structures found in most databases is a process of decomposition.
The integrated data must be decomposed properly into its constituent parts, with each
part stored in its own table. Further, the relationships between these tables must be
carefully considered and implemented so the integrated view of the data can be rec-
reated later as information for the end user. A well-designed database facilitates data
management and generates accurate and valuable information. A poorly designed
database is likely to become a breeding ground for difficult-to-trace errors that may
lead to poor decision making—and poor decision making can lead to the failure of
an organization. Database design is simply too important to be left to luck. That’s why
college students study database design, why organizations of all types and sizes send
personnel to database design seminars, and why database design consultants often
make an excellent living.

1-5 Evolution of File System Data Processing

Understanding what a database is, what it does, and the proper way to use it can be clar-
ified by considering what a database is not. A brief explanation of the evolution of file
system data processing can be helpful in understanding the data access limitations that
databases attempt to overcome. Understanding these limitations is relevant to database
designers and developers because database technologies do not make these problems
magically disappear—database technologies simply make it easier to create solutions that
avoid these problems. Creating database designs that avoid the pitfalls of earlier systems
requires that the designer understand these problems and how to avoid them; otherwise,
the database technologies are no better (and are potentially even worse!) than the tech-
nologies and techniques they have replaced.

1-5a Manual File Systems

To be successful, an organization must develop systems for handling core business
tasks. Historically, such systems were often manual, paper-and-pencil systems. The
papers within these systems were organized to facilitate the expected use of the data.
Typically, this was accomplished through a system of file folders and filing cabinets. As
long as a collection of data was relatively small and an organization’s business users had
few reporting requirements, the manual system served its role well as a data repository.
However, as organizations grew and as reporting requirements became more complex,
keeping track of data in a manual file system became more difficult. Therefore, compa-
nies looked to computer technology for help.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 15

1-5b Computerized File Systems data processing (DP)
specialist

Generating reports from manual file systems was slow and cumbersome. In fact, some The person responsible

business managers faced government-imposed reporting requirements that led to weeks for developing

and managing a
computerized file
processing system.

of intensive effort each quarter, even when a well-designed manual system was used.
Therefore, a data processing (DP) specialist was hired to create a computer-based sys-
tem that would track data and produce required reports.

Initially, the computer files within the file system were similar to the manual files.
A simple example of a customer data file for a small insurance company is shown in
Figure 1.6. (You will discover later that the file structure shown in Figure 1.6, although
typically found in early file systems, is unsatisfactory for a database.)

FIGURE 1.6 CONTENTS OF THE CUSTOMER FILE

Database name: Ch01_Text

C_MAME | C_PHOME | C_ADDRESS [czPr| answE [apPHonE [TP] amT | REN |
Alfred &, Ramas | 615-844-2573 | 218 Fork Rd., Babs, TN 36123 | Leah F. Habn | 615-882-1244 | T1 10000 05-Apr-2016
Leona K. Dunne | 713-894-1238 | Box 124, Fox, KY 25246 | Alex B. Alby | 713-225-1243 | T1 25000 16-Jun-2016
Wattry V. Smith | 615-594-2285 125 OakLn,Babs, TN | 36123 |LeshF.Hahn |615-862-2144 S2 15000 29-Jan-2017
PaulF. Olowski | 615-594-2160 | 217 Leeln. Babs, TN (36123 |LeshF.Hahn |615-G62-1244 |51 30000 14-Oct-2016
Myron Orlando | 615-222-1672 | Box 111, New, TH 36155 | Alex B. Ay |713-225-1243 | T1 10000 28-Dec-2016
Amy B.OBrian | 713-442-3381 | 357 Trol Dr., Foxt, KY 25248 | Jobn T.Okon | 615-123-5589 |T2 85000 22-Sep-2016
James G. Brown | 615-207-1228 |21 Tye Rel, Mash, TN 37118 |LeshF.Hahn | 515-882-1244 |1 12000 25-Mar-2017
George Wiliams | 615-290-2556 | 155 Maple, Mash, TN 37118 |John T. Ckon | 615-123-5569 | 51 25000 17-Jul-2016
Anne G.Farriss | 713-382-7185 | 2119Eim, Crew, KY 25432 | Alex B. Ay | 713-228-1249 T2 10000 03-Dec-2016
Olette bt Smith | 615-297-3503 | 2782 Main, Mash, TN |37118 | John T. Okon | §15-123-5589 |52 50000 14-Mer-2017

C_NAME = Customer name A_NAME = Agent name

C_PHONE = Customer phone A_PHONE = Agent phone

C_ADDRESS = Customer address P = Insurance type

C_7ZIp = Customer zip code AMT = Insurance policy amount, in thousands of $
REN = Insurance renewal date

The description of computer files requires a specialized vocabulary. Every
discipline develops its own terminology to enable its practitioners to communicate
clearly. The basic file vocabulary shown in Table 1.2 will help you to understand
subsequent discussions more easily.

TABLE 1.2

BASIC FILE TERMINOLOGY

TERM DEFINITION

Data Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales
value. Data has little meaning unless it has been organized in some logical manner.

Field A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to
define and store data.

Record A logically connected set of one or more fields that describes a person, place, or thing. For example,

the fields that constitute a record for a customer might consist of the customer's name, address, phone
number, date of birth, credit limit, and unpaid balance.

File A collection of related records. For example, a file might contain data about the students currently
enrolled at Gigantic University.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16 Part1

Online
Content

databases

used

The
in each chapter are

available at www.
cengagebrain.com.
Throughout the book,
Online Content boxes
highlight material related
to chapter content on
the website.

Database Concepts

Using the proper file terminology in Table 1.2, you can identify the file components
shown in Figure 1.6. The CUSTOMER file contains 10 records. Each record is composed
of 9 fields: C_NAME, C_PHONE, C_ADDRESS, C_ZIP, A_ NAME, A_PHONE, TP,
AMT, and REN. The 10 records are stored in a named file. Because the file in Figure 1.6
contains customer data for the insurance company; its filename is CUSTOMER.

When business users wanted data from the computerized file, they sent requests
for the data to the DP specialist. For each request, the DP specialist had to create pro-
grams to retrieve the data from the file, manipulate it in whatever manner the user had
requested, and present it as a printed report. If a request was for a report that had been
run previously, the DP specialist could rerun the existing program and provide the
printed results to the user. As other business users saw the new and innovative ways
in which customer data was being reported, they wanted to be able to view their data
in similar fashions. This generated more requests for the DP specialist to create more
computerized files of other business data, which in turn meant that more data man-
agement programs had to be created, which led to even more requests for reports. For
example, the sales department at the insurance company created a file named SALES,
which helped track daily sales efforts. The sales department's success was so obvious
that the personnel department manager demanded access to the DP specialist to auto-
mate payroll processing and other personnel functions. Consequently, the DP special-
ist was asked to create the AGENT file shown in Figure 1.7. The data in the AGENT file
was used to write checks, keep track of taxes paid, and summarize insurance coverage,
among other tasks.

FIGURE 1.7 CONTENTS OF THE AGENT FILE

Database name: Ch0O1_Text

A MAME | A PHOME | A ADDRESS | ZP | HRED | vTD_Pay | ¥TD_FIT | ¥TD_FIcA | ¥TO_SLS | DEP |
Alex B Ay | T13-226-1243 123 Toll, bash, TM |37119 | 01-Mow-2000 2636624 664156 2125300 13273775 3
Leah F.Hahn | B15-8582-1244 334 Main, Foo, BY (25246 | 23-May-1956 3221373 503344 237710 133967 .35]
John T. Okon | B15-123-3589 | 452 BElm, Mews, TH 36133 13-Jun-2003 2319329 579957 1835586 12709345 2

A_NAME = Agent name YTD_PAY = Year-to-date pay
A_PHONE = Agent phone YTD_FIT = Year-to-date federal income tax paid
A_ADDRESS = Agent address YTD_FICA = Year-to-date Social Security taxes paid

ZIP = Agent zip code
= Agent date of hire DEP

HIRED

YTD_SLS = Year-to-date sales
= Number of dependents

As more and more computerized files were developed, the problems with this type of file
system became apparent. While these problems are explored in detail in the next section,
the problems basically centered on having many data files that contained related—often
overlapping—data with no means of controlling or managing the data consistently across
all of the files. As shown in Figure 1.8, each file in the system used its own application
program to store, retrieve, and modify data. Also, each file was owned by the individual
or the department that commissioned its creation.

The advent of computer files to store company data was significant; it not only estab-
lished a landmark in the use of computer technologies, it also represented a huge step
forward in a business's ability to process data. Previously, users had direct, hands-on
access to all of the business data. But they didn't have the tools to convert that data
into the information they needed. The creation of computerized file systems gave them
improved tools for manipulating the company data that allowed them to create new

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

Database Systems 17

FIGURE 1.8 A SIMPLE FILE SYSTEM

Sales department Personnel department

information. However, it had the additional effect of introducing a schism between
the end users and their data. The desire to close the gap between the end users and
the data influenced the development of many types of computer technologies, sys-
tem designs, and uses (and misuses) of many technologies and techniques. However,
such developments also created a split between the ways DP specialists and end users
viewed the data.

« From the DP specialist’s perspective, the computer files within the file system were
created to be similar to the manual files. Data management programs were created to
add to, update, and delete data from the file.

« From the end user’s perspective, the systems separated the users from the data. As
the users’ competitive environment pushed them to make more and more decisions
in less time, users became frustrated by the delay between conceiving of a new way to
create information from the data and the point when the DP specialist actually created
the programs to generate that information.

1-5¢ File System Redux: Modern End-User
Productivity Tools

The users’ desire for direct, hands-on access to data helped to fuel the adoption of per-
sonal computers for business use. Although not directly related to file system evolution,
the ubiquitous use of personal productivity tools can introduce the same problems as the
old file systems.

Personal computer spreadsheet programs such as Microsoft Excel are widely used by
business users, and they allow the user to enter data in a series of rows and columns so the
data can be manipulated using a wide range of functions. The popularity of spreadsheet
applications has enabled users to conduct sophisticated data analysis that has greatly
enhanced their ability to understand the data and make better decisions. Unfortunately,
as in the old adage “When the only tool you have is a hammer, every problem looks like

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18 Part1

Database Concepts

a nail,” users have become so adept at working with spreadsheets that they tend to use
them to complete tasks for which spreadsheets are not appropriate.

A common misuse of spreadsheets is as a substitute for a database. Interestingly,
end users often take the limited data to which they have direct access and place it in
a spreadsheet format similar to that of the traditional, manual data storage systems—
which is precisely what the early DP specialists did when creating computerized data
files. Due to the large number of users with spreadsheets, each making separate copies
of the data, the resulting “file system” of spreadsheets suffers from the same problems
as the file systems created by the early DP specialists, which are outlined in the next
section.

1-6 Problems with File System Data Processing

The file system method of organizing and managing data was a definite improvement
over the manual system, and the file system served a useful purpose in data manage-
ment for over two decades—a very long time in the computer era. Nonetheless, many
problems and limitations became evident in this approach. A critique of the file system
method serves two major purposes:

« Understanding the shortcomings of the file system enables you to understand the
development of modern databases.

« Many of the problems are not unique to file systems. Failure to understand such prob-
lems is likely to lead to their duplication in a database environment, even though
database technology makes it easy to avoid them.

The following problems associated with file systems, whether created by DP specialists or
through a series of spreadsheets, severely challenge the types of information that can be
created from the data as well as the accuracy of the information:

o Lengthy development times. The first and most glaring problem with the file
system approach is that even the simplest data-retrieval task requires extensive
programming. With the older file systems, programmers had to specify what
must be done and how to do it. As you will learn in upcoming chapters, modern
databases use a nonprocedural data manipulation language that allows the user to
specify what must be done without specifying how.

o Difficulty of getting quick answers. The need to write programs to produce even the
simplest reports makes ad hoc queries impossible. Harried DP specialists who worked
with mature file systems often received numerous requests for new reports. They were
often forced to say that the report will be ready “next week” or even “next month?” If
you need the information now, getting it next week or next month will not serve your
information needs.

o Complex system administration. System administration becomes more difficult as
the number of files in the system expands. Even a simple file system with a few files
requires creating and maintaining several file management programs. Each file must
have its own file management programs that allow the user to add, modify, and delete
records; to list the file contents; and to generate reports. Because ad hoc queries are
not possible, the file reporting programs can multiply quickly. The problem is com-
pounded by the fact that each department in the organization “owns” its data by
creating its own files.

o Lack of security and limited data sharing. Another fault of a file system data repos-
itory is a lack of security and limited data sharing. Data sharing and security

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

are closely related. Sharing data among multiple geographically dispersed users
introduces a lot of security risks. In terms of spreadsheet data, while many spread-
sheet programs provide rudimentary security options, they are not always used,
and even when they are, they are insufficient for robust data sharing among users.
In terms of creating data management and reporting programs, security and
data-sharing features are difficult to program and consequently are often omitted
from a file system environment. Such features include effective password protec-
tion, the ability to lock out parts of files or parts of the system itself, and other mea-
sures designed to safeguard data confidentiality. Even when an attempt is made to
improve system and data security, the security devices tend to be limited in scope
and effectiveness.

« Extensive programming. Making changes to an existing file structure can be difficult
in a file system environment. For example, changing just one field in the original
CUSTOMER file would require a program that:

1. Reads a record from the original file.

2. Transforms the original data to conform to the new structure’s storage requirements.
3. Writes the transformed data into the new file structure.

4. Repeats the preceding steps for each record in the original file.

In fact, any change to a file structure, no matter how minor, forces modifications in all
of the programs that use the data in that file. Modifications are likely to produce errors
(bugs), and additional time is spent using a debugging process to find those errors. Those
limitations, in turn, lead to problems of structural and data dependence.

1-6a Structural and Data Dependence

A file system exhibits structural dependence, which means that access to a file is
dependent on its structure. For example, adding a customer date-of-birth field to the
CUSTOMER file shown in Figure 1.6 would require the four steps described in the pre-
vious section. Given this change, none of the previous programs will work with the new
CUSTOMER file structure. Therefore, all of the file system programs must be modified to
conform to the new file structure. In short, because the file system application programs
are affected by changes in the file structure, they exhibit structural dependence. Con-
versely, structural independence exists when you can change the file structure without
affecting the application’s ability to access the data.

Even changes in the characteristics of data, such as changing a field from integer to
decimal, require changes in all the programs that access the file. Because all data access
programs are subject to change when any of the file’s data storage characteristics change
(that is, changing the data type), the file system is said to exhibit data dependence.
Conversely, data independence exists when you can change the data storage character-
istics without affecting the program’s ability to access the data.

The practical significance of data dependence is the difference between the
logical data format (how the human being views the data) and the physical data
format (how the computer must work with the data). Any program that accesses a
tile system’s file must tell the computer not only what to do but how to do it. Con-
sequently, each program must contain lines that specify the opening of a specific
file type, its record specification, and its field definitions. Data dependence makes
the file system extremely cumbersome from the point of view of a programmer and
database manager.

Database Systems 19

structural
dependence

A data characteristic

in which a change in
the database schema
affects data access, thus
requiring changes in all
access programs.

structural
independence

A data characteristic in
which changes in the
database schema do not
affect data access.

data dependence
A data condition

in which data
representation and
manipulation are
dependent on the
physical data storage
characteristics.

data independence
A condition in which
data access is unaffected
by changes in the
physical data storage
characteristics.

logical data format

The way a person views
data within the context
of a problem domain.

physical data format
The way a computer
“sees” (stores) data.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20 Part1 Database Concepts

islands of
information

In the old file system
environment, pools

of independent,

often duplicated, and
inconsistent data

created and managed by
different departments.

data redundancy
Exists when the

same data is stored
unnecessarily at different
places.

data integrity

In a relational database,
a condition in which
the data in the database
complies with all entity
and referential integrity
constraints.

Note

1-6b Data Redundancy

The file system’s structure makes it difficult to combine data from multiple sources, and
its lack of security renders the file system vulnerable to security breaches. The organi-
zational structure promotes the storage of the same basic data in different locations.
(Database professionals use the term islands of information for such scattered data
locations.) The dispersion of data is exacerbated by the use of spreadsheets to store data.
In a file system, the entire sales department would share access to the SALES data file
through the data management and reporting programs created by the DP specialist.
With the use of spreadsheets, each member of the sales department can create his or
her own copy of the sales data. Because data stored in different locations will probably
not be updated consistently, the islands of information often contain different versions
of the same data. For example, in Figures 1.6 and 1.7, the agent names and phone num-
bers occur in both the CUSTOMER and the AGENT files. You only need one correct
copy of the agent names and phone numbers. Having them occur in more than one
place produces data redundancy. Data redundancy exists when the same data is stored
unnecessarily at different places.
Uncontrolled data redundancy sets the stage for the following:

o Poor data security. Having multiple copies of data increases the chances for a copy of
the data to be susceptible to unauthorized access. Chapter 16, Database Administra-
tion and Security, explores the issues and techniques associated with securing data.

« Data inconsistency. Data inconsistency exists when different and conflicting ver-
sions of the same data appear in different places. For example, suppose you change
an agent’s phone number in the AGENT file. If you forget to make the correspond-
ing change in the CUSTOMER file, the files contain different data for the same
agent. Reports will yield inconsistent results that depend on which version of the
data is used.

» Data-entry errors. Data-entry errors are more likely to occur when complex entries
(such as 10-digit phone numbers) are made in several different files or recur frequently
in one or more files. In fact, the CUSTOMER file shown in Figure 1.6 contains just
such an entry error: the third record in the CUSTOMER file has transposed digits in
the agent’s phone number (615-882-2144 rather than 615-882-1244).

 Data integrity problems. It is possible to enter a nonexistent sales agent’s name and
phone number into the CUSTOMER file, but customers are not likely to be impressed
if the insurance agency supplies the name and phone number of an agent who does
not exist. Should the personnel manager allow a nonexistent agent to accrue bonuses
and benefits? In fact, a data-entry error such as an incorrectly spelled name or an
incorrect phone number yields the same kind of data integrity problems.

Data that displays data inconsistency is also referred to as data that lacks data integrity.
Data integrity is defined as the condition in which all of the data in the database is
consistent with the real-world events and conditions. In other words, data integrity means

that:

» Data is accurate—there are no data inconsistencies.

« Data is verifiable—the data will always yield consistent results.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

1-6¢ Data Anomalies

The dictionary defines anomaly as “an abnormality” Ideally, a field value change should
be made in only a single place. Data redundancy, however, fosters an abnormal condition
by forcing field value changes in many different locations. Look at the CUSTOMER file
in Figure 1.6. If agent Leah F. Hahn decides to get married and move, the agent name,
address, and phone number are likely to change. Instead of making these changes in a
single file (AGENT), you must also make the change each time that agent’s name and
phone number occur in the CUSTOMER file. You could be faced with the prospect of
making hundreds of corrections, one for each of the customers served by that agent! The
same problem occurs when an agent decides to quit. Each customer served by that agent
must be assigned a new agent. Any change in any field value must be correctly made in
many places to maintain data integrity. A data anomaly develops when not all of the
required changes in the redundant data are made successfully. The data anomalies found
in Figure 1.6 are commonly defined as follows:

o Update anomalies. If agent Leah E Hahn has a new phone number, it must be entered
in each of the CUSTOMER file records in which Ms. Hahn’s phone number is shown.
In this case, only four changes must be made. In a large file system, such a change
might occur in hundreds or even thousands of records. Clearly, the potential for data
inconsistencies is great.

o Insertion anomalies. If only the CUSTOMER file existed and you needed to add
a new agent, you would also add a dummy customer data entry to reflect the
new agent’s addition. Again, the potential for creating data inconsistencies would be
great.

« Deletion anomalies. If you delete the customers Amy B. O’Brian, George Williams,
and Olette K. Smith, you will also delete John T. Okon’s agent data. Clearly, this is not
desirable.

On a positive note, however, this book will help you develop the skills needed
to design and model a successful database that avoids the problems listed in this
section.

1-7 Database Systems

The problems inherent in file systems make using a database system very desirable.
Unlike the file system, with its many separate and unrelated files, the database system
consists of logically related data stored in a single logical data repository. (The “logical”
label reflects the fact that the data repository appears to be a single unit to the end user,
even though data might be physically distributed among multiple storage facilities and
locations.) Because the database’s data repository is a single logical unit, the database
represents a major change in the way end-user data is stored, accessed, and managed.
The database’s DBMS, shown in Figure 1.9, provides numerous advantages over file sys-
tem management, shown in Figure 1.8, by making it possible to eliminate most of the
file system’s data inconsistency, data anomaly, data dependence, and structural depen-
dence problems. Better yet, the current generation of DBMS software stores not only
the data structures, but also the relationships between those structures and the access
paths to those structures—all in a central location. The current generation of DBMS
software also takes care of defining, storing, and managing all required access paths to
those components.

Database Systems 21

data anomaly

A data abnormality

in which inconsistent
changes have been
made to a database. For
example, an employee
moves, but the address
change is not corrected
in all files in the
database.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22 Part1 Database Concepts

FIGURE 1.9 CONTRASTING DATABASE AND FILE SYSTEMS

A Database System

Personnel dept. Database
\ Employees

Sales dept. Sales
P ’ Inventory

Accounts

Accounting dept.

A File System

Personnel dept. Sales dept. Accounting dept.

= I Y e R enm—— o
Employees Customers Sales Inventory

Remember that the DBMS is just one of several crucial components of a database sys-
tem. The DBMS may even be referred to as the database system’s heart. However, just as
it takes more than a heart to make a human being function, it takes more than a DBMS to
make a database system function. In the sections that follow, you’ll learn what a database
system is, what its components are, and how the DBMS fits into the picture.

1-7a The Database System Environment

The term database system refers to an organization of components that define and
regulate the collection, storage, management, and use of data within a database environ-
ment. From a general management point of view, the database system is composed of the
five major parts shown in Figure 1.10: hardware, software, people, procedures, and data.

Let’s take a closer look at the five components shown in Figure 1.10:

o Hardware. Hardware refers to all of the system’s physical devices, including computers
(PCs, tablets, workstations, servers, and supercomputers), storage devices, printers,
network devices (hubs, switches, routers, fiber optics), and other devices (automated
teller machines, ID readers, and so on).

2:33::;;%?5;“ o Software. Although the most readily identified software is the DBMS itself, three types
components that of software are needed to make the database system function fully: operating system
defines and regulates software, DBMS software, and application programs and utilities.

the collection, storage, . . .
TR e el - Operating system software manages all hardware components and makes it possible
of data in a database for all other software to run on the computers. Examples of operating system soft-
environment. ware include Microsoft Windows, Linux, Mac OS, UNIX, and MVS.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 23

FIGURE 1.10 THE DATABASE SYSTEM ENVIRONMENT

writes
and
enforces

h

[' supervises
| Database System

Analysts Database administrator 3 dministrator
M

~ designer {manages o
m m“ designs

End users Programmers

Procedures
and standards

Hardware

Apphcatlon
programs write

= E

DBMS utilities

- DBMS software manages the database within the database system. Some examples
of DBMS software include Microsoft's SQL Server, Oracle Corporation’s Oracle,
Oracle’s MySQL, and IBM’s DB2.

- Application programs and utility software are used to access and manipulate data
in the DBMS and to manage the computer environment in which data access
and manipulation take place. Application programs are most commonly used
to access data within the database to generate reports, tabulations, and other
information to facilitate decision making. Utilities are the software tools used
to help manage the database system’s computer components. For example, all
of the major DBMS vendors now provide graphical user interfaces (GUIs) to
help create database structures, control database access, and monitor database
operations.

o People. This component includes all users of the database system. On the basis of
primary job functions, five types of users can be identified in a database system: sys-
tem administrators, database administrators, database designers, system analysts and
programmers, and end users. Each user type, described next, performs both unique
and complementary functions.

- System administrators oversee the database system’s general operations.

- Database administrators, also known as DBAs, manage the DBMS and ensure
that the database is functioning properly. The DBA’ role is sufficiently import-
ant to warrant a detailed exploration in Chapter 16, Database Administration and
Security.

— Database designers design the database structure. They are, in effect, the database
architects. If the database design is poor, even the best application programmers
and the most dedicated DBAs cannot produce a useful database environment.
Because organizations strive to optimize their data resources, the database
designer’s job description has expanded to cover new dimensions and growing
responsibilities.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24 Part1

Database Concepts

- System analysts and programmers design and implement the application programs.
They design and create the data-entry screens, reports, and procedures through
which end users access and manipulate the database’s data.

— End users are the people who use the application programs to run the organi-
zation’s daily operations. For example, sales clerks, supervisors, managers, and
directors are all classified as end users. High-level end users employ the informa-
tion obtained from the database to make tactical and strategic business decisions.

o Procedures. Procedures are the instructions and rules that govern the design and use
of the database system. Procedures are a critical, although occasionally forgotten,
component of the system. Procedures play an important role in a company because
they enforce the standards by which business is conducted within the organization
and with customers. Procedures also help to ensure that companies have an organized
way to monitor and audit the data that enter the database and the information gener-
ated from those data.

 Data. The word data covers the collection of facts stored in the database. Because data
is the raw material from which information is generated, determining which data to
enter into the database and how to organize that data is a vital part of the database
designer’s job.

A database system adds a new dimension to an organization’s management struc-
ture. The complexity of this managerial structure depends on the organization’s size,
its functions, and its corporate culture. Therefore, database systems can be created and
managed at different levels of complexity and with varying adherence to precise stan-
dards. For example, compare a local convenience store system with a national insur-
ance claims system. The convenience store system may be managed by two people,
the hardware used is probably a single computer, the procedures are probably simple,
and the data volume tends to be low. The national insurance claims system is likely to
have at least one systems administrator, several full-time DBAs, and many designers
and programmers; the hardware probably includes several servers at multiple locations
throughout the United States; the procedures are likely to be numerous, complex, and
rigorous; and the data volume tends to be high.

In addition to the different levels of database system complexity, managers must also
take another important fact into account: database solutions must be cost-effective as
well as tactically and strategically effective. Producing a million-dollar solution to a
thousand-dollar problem is hardly an example of good database system selection or of
good database design and management. Finally, the database technology already in use
is likely to affect the selection of a database system.

1-7b DBMS Functions

A DBMS performs several important functions that guarantee the integrity and consis-
tency of the data in the database. Most of those functions are transparent to end users,
and most can be achieved only through the use of a DBMS. They include data dictio-
nary management, data storage management, data transformation and presentation,
security management, multiuser access control, backup and recovery management,
data integrity management, database access languages and application program-
ming interfaces, and database communication interfaces. Each of these functions is
explained as follows:

o Data dictionary management. The DBMS stores definitions of the data elements
and their relationships (metadata) in a data dictionary. In turn, all programs that

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 25

FIGURE 1.11 ILLUSTRATING METADATA WITH MICROSOFT SQL SERVER EXPRESS

Fde Edit View Project DOebug Table Desigeer Tooli Window Help
P ol 3l | tew ey L TR Eh (5| 4 a9 - o - -
| = A2 B
bect Explorer = 4 5 | CISORAINGRADSAL...- dba.lgustames % - B s
Connect~ &/ & m 7 5] T o ~ f IThi] dbadgeustamer
= [CISORATGRADSAL (301 Server 11021 | cust_code ——] =
= [Databases cust_frame \archariz)]
+ [Systern Databases
% [Databese Snepihots
% [Reportiener}GRADSOL Cust_itrast warchar 7l
& 1) ReportSenerdGRADTOL TempOE cust city \archars0)
= | CORMOR
[Databiase Diagrams
= [Tables
[Systern Tables cust_balance nueric(d, 2 Identity Calum
& [FileTables — desable Yes

O dboJgbrand
— . Cobumn Properties

cust_Iname warchari20)

cust_atate chanZ]
cust_zip chanf]

Lock Excalstion Table
. Regular Data S¢ PRIMARY

L&-_ &1 = Reglicated Hy

[T ol

T dbelgdepartment
5 O dbelgempleyee

% 2 dbolginvoice
@ O dbedgline
3 dbolgproduct
T dbodgsalany_ history
5 7 dbelgsuaplie:
3 dbodguendar

B [View

iName)

Al Nulls

Data Type

Default Vahue o Binding
Precision

Scale

cust_cade
Mo
numeric

]
a

+ [Synonyms Table Designer

® [Programmability Collation cdatabase defait>
% [Senvice Braker Computed Colurmn Saecdication
B [Storage Condensed Dats Type
® [Security Deseriatian

@ L Secunity

% [Server Objects

% [Replcation

3 (2 Abway:On High Svailsbiliey

% [Management

7 (24 Integration Services Catalags

B S04 Senver Agent (Agent XPs disabl

Aurnaric(38, 3

Identity Specification

Indesable

[General)
[kdentity]

access the data in the database work through the DBMS. The DBMS uses the data
dictionary to look up the required data component structures and relationships,
thus relieving you from having to code such complex relationships in each pro-
gram. Additionally, any changes made in a database structure are automatically
recorded in the data dictionary, thereby freeing you from having to modify all of
the programs that access the changed structure. In other words, the DBMS provides
data abstraction, and it removes structural and data dependence from the system.
For example, Figure 1.11 shows how Microsoft SQL Server Express presents the
data definition for the CUSTOMER table.

Data storage management. The DBMS creates and manages the complex structures
required for data storage, thus relieving you from the difficult task of defining and
programming the physical data characteristics. A modern DBMS provides storage
not only for the data but for related data-entry forms or screen definitions, report
definitions, data validation rules, procedural code, structures to handle video
and picture formats, and so on. Data storage management is also important for
database performance tuning. Performance tuning relates to the activities that
make the database perform more efficiently in terms of storage and access speed.
Although the user sees the database as a single data storage unit, the DBMS actu-
ally stores the database in multiple physical data files. (See Figure 1.12.) Such data
files may even be stored on different storage media. Therefore, the DBMS doesn’t
have to wait for one disk request to finish before the next one starts. In other
words, the DBMS can fulfill database requests concurrently. Data storage man-
agement and performance tuning issues are addressed in Chapter 11, Database

Performance Tuning and Query Optimization.

data dictionary

A DBMS component that
stores metadata—data
about data. The data
dictionary contains

data definitions as well
as data characteristics
and relationships. May
also include data that is
external to the DBMS.

performance tuning
Activities that make a
database perform more
efficiently in terms of
storage and access
speed.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26 Part1 Database Concepts

FIGURE 1.12 ILLUSTRATING DATA STORAGE MANAGEMENT WITH ORACLE

| Database Name: PRODORA |

ORFACLE Enterprise Manager Database Exgress 120 Help ~ | 8 sMorrIs | Logout)
,1,0.1.0) &~ Configuration ¥ < age L BE Performance v
Tablespaces Page Refreshed 12:26:07 PM GMT-0600 (5,
Actions View ¥ Creste 38 dh atafi || Permanent & Tablespace Hame
Mare | Slze Ftee Space | Used (%) Auto Extend Maximum Size | Status | Tvpe | (] | Auta Segment Management | Directary
Bl GRADS 10GE — 10GE |0 1058 @ 2 v EORACLEY, ..
GRADZD1,DEF 106D [— 10GE |0 10GB @ 5} EAORACLE!,..
B SYsALE | z0ame - v Unlimited @ 5] v EXORACLE!, ..
O1_MF_5YSAU%_959PCTaH_DEF | 208 [v Unlimited @ 8 EXORACLEY,..
B SYSTEM | B9EKE . v Unlimited @ 5] EAORACLE!,..
01_MF_SYSTEM_959PFW/GY _,DBF | 896KB . v Unlimited @ 5} EAORACLE!, ..
O TEMP W 1GB |1 v Unlimited @ &) EXORACLE!, ..
O1_MF_TEMP_9S9PNEKF_, TMP W 166 71 v Unlimited @ &) EXORACLEY,..
B UNDOTESL 28 |7 v Unlimited @ 5 Y E:ORACLE!,..
01_MF_UNDOTES1_959PHZYR_ D i zch |7 v Unlimiterd @ 82 EAORACLEY, ..
B USERS | 4zMB Has v Unlimited @ 5} v EAORACLE!,..
01 MF_USERS_950PHYHZ_.DEF |42mE Mas v Unlimited @ 5} EXORACLEY, ..
\ \/
The PRODORA database is The Oracle Enterprise
actually stored in six physical Manager Express interface
datafiles organized into six also shows the amount of
logical tablespaces located space used by each of the
on the E: drive of the datafiles.
database server computer

The Oracle Enterprise Manager Express GUI shows the data
storage management characteristics for the PRODORA database.

 Data transformation and presentation. The DBMS transforms entered data to con-
form to required data structures. The DBMS relieves you of the chore of distin-
guishing between the logical data format and the physical data format. That is, the
DBMS formats the physically retrieved data to make it conform to the user’s logical
expectations. For example, imagine an enterprise database used by a multinational
company. An end user in England would expect to enter the date July 11, 2017, as
“11/07/2017” In contrast, the same date would be entered in the United States as
“07/11/2017” Regardless of the data presentation format, the DBMS must manage
the date in the proper format for each country.

o Security management. The DBMS creates a security system that enforces user secu-
rity and data privacy. Security rules determine which users can access the database,
which data items each user can access, and which data operations (read, add, delete,
or modify) the user can perform. This is especially important in multiuser database
systems. Chapter 16, Database Administration and Security, examines data security
and privacy issues in greater detail. All database users may be authenticated to the
DBMS through a username and password or through biometric authentication such
as a fingerprint scan. The DBMS uses this information to assign access privileges to
various database components such as queries and reports.

o Multiuser access control. To provide data integrity and data consistency, the DBMS
uses sophisticated algorithms to ensure that multiple users can access the database

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

concurrently without compromising its integrity. Chapter 10, Transaction Manage-
ment and Concurrency Control, covers the details of multiuser access control.

Backup and recovery management. The DBMS provides backup and data recovery
to ensure data safety and integrity. Current DBMS systems provide special utilities
that allow the DBA to perform routine and special backup and restore procedures.
Recovery management deals with the recovery of the database after a failure, such
as a bad sector in the disk or a power failure. Such capability is critical to preserv-
ing the database’s integrity. Chapter 16 covers backup and recovery issues.

Data integrity management. The DBMS promotes and enforces integrity rules, thus
minimizing data redundancy and maximizing data consistency. The data relation-
ships stored in the data dictionary are used to enforce data integrity. Ensuring data
integrity is especially important in transaction-oriented database systems. Data
integrity and transaction management issues are addressed in Chapter 7, Intro-
duction to Structured Query Language (SQL), and Chapter 10.

Database access languages and application programming interfaces. The DBMS pro-
vides data access through a query language. A query language is a nonprocedural
language—one that lets the user specify what must be done without having to specify
how. Structured Query Language (SQL) is the de facto query language and data
access standard supported by the majority of DBMS vendors. Chapter 7, Introduction
to Structure Query Language (SQL), and Chapter 8, Advanced SQL, address the use
of SQL. The DBMS also provides application programming interfaces to procedural
languages such as COBOL, C, Java, Visual Basic.NET, and C#. In addition, the DBMS
provides administrative utilities used by the DBA and the database designer to create,
implement, monitor, and maintain the database.

Database communication interfaces. A current-generation DBMS accepts end-user
requests via multiple, different network environments. For example, the DBMS might
provide access to the database via the Internet through the use of web browsers such as
Mozilla Firefox, Google Chrome, or Microsoft Internet Explorer. In this environment,
communications can be accomplished in several ways:

- End users can generate answers to queries by filling in screen forms through their
preferred web browser.

- The DBMS can automatically publish predefined reports on a website.

— The DBMS can connect to third-party systems to distribute information via email
or other productivity applications.

Database communication interfaces are examined in greater detail in Chapter 12,
Distributed Database Management Systems; in Chapter 15, Database Connectivity and
Web Technologies; and in Appendix I, Databases in Electronic Commerce. (Appendixes
are available at www.cengagebrain.com.)

Note
Why a Spreadsheet Is Not a Database

While a spreadsheet allows for the manipulation of data in a tabular format, it does not support
even the most basic database functionality such as support for self-documentation through
metadata, enforcement of data types or domains to ensure consistency of data within a col-
umn, defined relationships among tables, or constraints to ensure consistency of data across
related tables. Most users lack the necessary training to recognize the limitations of spread-
sheets for these types of tasks.

Database Systems 27

query language

A nonprocedural
language that is used by
a DBMS to manipulate
its data. An example of a
query language is SQL.

Structured Query
Language (SQL)

A powerful and flexible
relational database
language composed of
commands that enable
users to create database
and table structures,
perform various types
of data manipulation
and data administration,
and query the database
to extract useful
information.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28 Part1

Database Concepts

1-7¢ Managing the Database System: A Shift in Focus

The introduction of a database system over the file system provides a framework in
which strict procedures and standards can be enforced. Consequently, the role of the
human component changes from an emphasis on programming (in the file system) to a
focus on the broader aspects of managing the organization’s data resources and on the
administration of the complex database software itself.

The database system makes it possible to tackle far more sophisticated uses of the data
resources, as long as the database is designed to make use of that power. The kinds of data
structures created within the database and the extent of the relationships among them
play a powerful role in determining the effectiveness of the database system.

Although the database system yields considerable advantages over previous data
management approaches, database systems do carry significant disadvantages:

o Increased costs. Database systems require sophisticated hardware and software and
highly skilled personnel. The cost of maintaining the hardware, software, and person-
nel required to operate and manage a database system can be substantial. Training,
licensing, and regulation compliance costs are often overlooked when database sys-
tems are implemented.

o Management complexity. Database systems interface with many different technolo-
gies and have a significant impact on a company’s resources and culture. The changes
introduced by the adoption of a database system must be properly managed to ensure
that they help advance the company’s objectives. Because database systems hold cru-
cial company data that are accessed from multiple sources, security issues must be
assessed constantly.

 Maintaining currency. To maximize the efficiency of the database system, you must keep
your system current. Therefore, you must perform frequent updates and apply the latest
patches and security measures to all components. Because database technology advances
rapidly, personnel training costs tend to be significant.

o Vendor dependence. Given the heavy investment in technology and personnel train-
ing, companies might be reluctant to change database vendors. As a consequence,
vendors are less likely to offer pricing point advantages to existing customers, and
those customers might be limited in their choice of database system components.

o Frequent upgrade/replacement cycles. DBMS vendors frequently upgrade their prod-
ucts by adding new functionality. Such new features often come bundled in new
upgrade versions of the software. Some of these versions require hardware upgrades.
Not only do the upgrades themselves cost money; it also costs money to train database
users and administrators to properly use and manage the new features.

Now that you know what a database and DBMS are, and why they are necessary, you are
ready to begin developing your career as a database professional.

1-8 Preparing for Your Database
Professional Career

In this chapter, you were introduced to the concepts of data, information, databases, and
DBMSs. You also learned that, regardless of what type of database you use (OLTP, OLAP,
or NoSQL), or what type of database environment you are working in (e.g., Oracle,
Microsoft, IBM, or Hadoop), the success of a database system greatly depends on how
well the database structure is designed.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 29

Throughout this book, you will learn the building blocks that lay the foundation for
your career as a database professional. Understanding these building blocks and devel-
oping the skills to use them effectively will prepare you to work with databases at many
different levels within an organization. A small sample of such career opportunities is

shown in Table 1.3.

TABLE 1.3

DATABASE CAREER OPPORTUNITIES

JOBTITLE

Database Developer

DESCRIPTION

Create and maintain database-based
applications

SAMPLE SKILLS REQUIRED

Programming, database fundamentals,
SQL

Database Designer

Design and maintain databases

Systems design, database design, SQL

Database Administrator

Manage and maintain DBMS and
databases

Database fundamentals, SQL, vendor
courses

Database Analyst

Develop databases for decision support
reporting

SQL, query optimization, data
warehouses

Database Architect

Design and implementation of database
environments (conceptual, logical, and
physical)

DBMS fundamentals, data modeling, SQL,
hardware knowledge, etc.

Database Consultant

Help companies leverage database
technologies to improve business
processes and achieve specific goals

Database fundamentals, data modeling,
database design, SQL, DBMS, hardware,
vendor-specific technologies, etc.

Database Security Officer

Implement security policies for data
administration

DBMS fundamentals, database
administration, SQL, data security
technologies, etc.

Cloud Computing Data Architect

Design and implement the infrastructure
for next-generation cloud database
systems

Internet technologies, cloud storage
technologies, data security, performance
tuning, large databases, etc.

As you also learned in this chapter, database technologies are constantly evolving to
address new challenges such as large databases, semistructured and unstructured data,
increasing processing speed, and lowering costs. While database technologies can change
quickly, the fundamental concepts and skills do not. It is our goal that after you learn the
database essentials in this book, you will be ready to apply your knowledge and skills to
work with traditional OLTP and OLAP systems as well as cutting-edge, complex data-
base technologies such as the following:

o Very Large Databases (VLDB). Many vendors are addressing the need for databases
that support large amounts of data, usually in the petabyte range. (A petabyte is more
than 1,000 terabytes.) VLDB vendors include Oracle Exadata, IBM’s Netezza, HP’s
Vertica, and Teradata. VLDB are now being overtaken in market interest by Big Data

databases.

Big Data databases. Products such as Cassandra (Facebook) and BigTable (Google)

are using “columnar-database” technologies to support the needs of database appli-
cations that manage large amounts of “nontabular” data. See more about this topic in

Chapter 2.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30 Part1 Database Concepts

In-memory databases. Most major database vendors also offer some type of in-memory
database support to address the need for faster database processing. In-memory
databases store most of their data in primary memory (RAM) rather than in slower
secondary storage (hard disks). In-memory databases include IBM’s solidDB and
Oracle’s TimesTen.

Cloud databases. Companies can now use cloud database services to quickly add
database systems to their environment while simultaneously lowering the total cost
of ownership of a new DBMS. A cloud database offers all the advantages of a local
DBMS, but instead of residing within your organization’s network infrastructure, it
resides on the Internet. See more about this topic in Chapter 15.

We address some of these topics in this book, but not all—no single book can cover

the entire realm of database technologies. This book’s primary focus is to help you
learn database fundamentals, develop your database design skills, and master your
SQL skills so you will have a head start in becoming a successful database professional.
However, you first must learn about the tools at your disposal. In the next chapter, you
will learn different approaches to data management and how these approaches influ-
ence your designs.

Summary

Data consists of raw facts. Information is the result of processing data to reveal its
meaning. Accurate, relevant, and timely information is the key to good decision
making, and good decision making is the key to organizational survival in a global
environment.

Data is usually stored in a database. To implement a database and to manage its con-
tents, you need a database management system (DBMS). The DBMS serves as the
intermediary between the user and the database. The database contains the data you
have collected and “data about data,” known as metadata.

Database design defines the database structure. A well-designed database facili-
tates data management and generates accurate and valuable information. A poorly
designed database can lead to poor decision making, and poor decision making can
lead to the failure of an organization.

Databases can be classified according to the number of users supported, where the
data is located, the type of data stored, the intended data usage, and the degree to
which the data is structured.

Databases evolved from manual and then computerized file systems. In a file system,
data is stored in independent files, each requiring its own data management programs.
Although this method of data management is largely outmoded, understanding its
characteristics makes database design easier to comprehend.

Some limitations of file system data management are that it requires extensive pro-
gramming, system administration can be complex and difficult, making changes to
existing structures is difficult, and security features are likely to be inadequate. Also,
independent files tend to contain redundant data, leading to problems of structural
and data dependence.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Database Systems 31

« Database management systems were developed to address the file system’s inherent
weaknesses. Rather than depositing data in independent files, a DBMS presents the
database to the end user as a single data repository. This arrangement promotes
data sharing, thus eliminating the potential problem of islands of information. In
addition, the DBMS enforces data integrity, eliminates redundancy, and promotes

data security.

+ Knowledge of database technologies leads to many career opportunities in the
ever-expanding IT industry. There is a variety of specialization within the database

arena for a wide range of skills and expertise.

Key Terms

ad hoc query
analytical database
business intelligence
centralized database
cloud database

data

data anomaly

data dependence
data dictionary

data inconsistency
data independence
data integrity

data management

data processing (DP)
specialist

data quality

data redundancy
data warehouse
database

database design

database management

system (DBMS)

database system
desktop database

discipline-specific
database

distributed database
enterprise database

Extensible Markup
Language (XML)

field

file

general-purpose database
information

islands of information
knowledge

logical data format
metadata

multiuser database
NoSQL

online analytical processing
(OLAP)

online transaction processing
(OLTP) database

operational database
performance tuning
physical data format
production database
query

query language
query result set
record
semistructured data
single-user database

social media

structural dependence

Online
Content

Flashcards and crossword
puzzles for key term practice
are available at
www.cengage brain.com.

structural independence

structured data

Structured Query Language

(SQL)

transactional database

unstructured data
workgroup database
XML database

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32 Part1 Database Concepts

Review Questions

1. Define each of the following terms:
a. data

b. field

c. record

d. file

What is data redundancy, and which characteristics of the file system can lead to it?
What is data independence, and why is it lacking in file systems?

What is a DBMS, and what are its functions?

What is structural independence, and why is it important?

Explain the differences among data, information, and a database.

What is the role of a DBMS, and what are its advantages? What are its disadvantages?
List and describe the different types of databases.

¥ ® NI »

What are the main components of a database system?

—
(=]

. What is metadata?

—
—_

. Explain why database design is important.

—
\S)

. What are the potential costs of implementing a database system?

—
[SN]

. Use examples to compare and contrast unstructured and structured data. Which
type is more prevalent in a typical business environment?

14. What are some basic database functions that a spreadsheet cannot perform?

15. What common problems does a collection of spreadsheets created by end users
share with the typical file system?

16. Explain the significance of the loss of direct, hands-on access to business data that
end users experienced with the advent of computerized data repositories.

17. Explain why the cost of ownership may be lower with a cloud database than with a
traditional, company database.

Problems

FIGURE P1.1 THE FILE STRUCTURE FOR PROBLEMS 1-4

.

»¢ Online
A PROJECT_CODE | PROJECT_MANAGER | MANAGER_PHONE | MANAGER_ADDRESS [PROJECT BID_PRICE |
CO n te nt 21-5Z Holly B. Parker 904-336-3416 3334 Lee Rd., Gainesvile, FL 37123 16833460 00
2520 Jane D. Grant £15-698-2303 218 Clark Blvd., Nashwile, TN 36362 12500000 00
25-54, George F. Dorts £15-227-1245 124 River Dr., Frankin, TH 29185 3251242000
2597 Holly B Parker 904-338-3416 3334 Lee Rdl., Gainesvile, FL 37123 21563234.00
2740 George F.Dorts £15-227-1245 124 River Dr , Franklin, TN 29185 10314545 00
The file structures you see 2320 Hally B. Parker 904-335-3416 3334 Lee R, Gainesvile, FL 37123 25559999.00
in this problem set are sim- 31-7F william k. Moor 904-445-2719 216 Morton R, Stetson, FL 30155 5685000000

ulated in a Microsoft Access
database named ChO01_
Problems, which is available
at www.cengagebrain.com.

Chapter 1

Given the file structure shown in Figure P1.1, answer Problems 1-4.

1.
2.

How many records does the file contain? How many fields are there per record?

What problem would you encounter if you wanted to produce a listing by city? How
would you solve this problem by altering the file structure?

If you wanted to produce a listing of the file contents by last name, area code, city,
state, or zip code, how would you alter the file structure?

What data redundancies do you detect? How could those redundancies lead to
anomalies?

FIGURE P1.5 THE FILE STRUCTURE FOR PROBLEMS 5-8

PROJ_NUM | PROJ_NSME | EMP_NUM | EMP_NAME [JOB_CODE | JOB_CHG_HOUR | PROJ_HOLRS | EMP_PHOMNE |
1 Hurricane 101 | John L. Meweson EE 85.00 13,3 B53-234-3245
1 Hurricane 105 David F. Schweann | CT E0.00 162 B53-234-1123
1 Hurricane 110 Anne . Ramoras | CT E0.00 14 .3 B15-233-5568
2 Coast 1071 John D. Mewson | EE 55.00 195 B53-234-3254
2 Coast 108 June H. Sattlemeir | EE 55.00 17 5 905-554-7512
3 Satelite 110 &nne R, Ramoras | CT £2.00 11 5| 615-233-5568
3 Satalite 105 David F. Schwann | CT 26.00 23 4(653-234-1123
3 Satelite 123 Mary D Chen EE 85.00 191|615-233-5432
3 Satelite 112 Allecia R. Smith | BE 35.00 207 615-678-6379

Identify and discuss the serious data redundancy problems exhibited by the file
structure shown in Figure P1.5.

Looking at the EMP_NAME and EMP_PHONE contents in Figure P1.5, what
change(s) would you recommend?

Identify the various data sources in the file you examined in Problem 5.

Given your answer to Problem 7, what new files should you create to help eliminate
the data redundancies found in the file shown in Figure P1.5?

FIGURE P1.9 THE FILE STRUCTURE FOR PROBLEMS 9-10

9.

10.

BUILDING_CODE | ROOM_COCE | TEACHER_LMAME | TEACHER_FMAME | TEACHER_INTIAL | Davs_TME |
HOM 204E willistan Horace G WF 5:00-5:50
Fiohd 123 Cordoza haria L WA G:00-G:50
LDB 504 Patroski Darald J TTh 1:00-215
e 34 Harackins A Wy fAF 10:00-10:50
JKP 2358 Rizell James TTh 2001015
LDB 301 Fobertzon Jeanette P TTh 300-10:15
Kioh 204E Cordoza hiaria | b 9:00-8:50
LDB 504 williztan Horace G TTh1:00-215
HOM 34 Cordoza haria L WF 11:00-11:50
LDB 504 Patroski Donald J WAF 2:00-2:50

Identify and discuss the serious data redundancy problems exhibited by the file
structure shown in Figure P1.9. (The file is meant to be used as a teacher class
assignment schedule. One of the many problems with data redundancy is the likely
occurrence of data inconsistencies—two different initials have been entered for the

teacher named Maria Cordoza.)

Given the file structure shown in Figure P1.9, what problem(s) might you encounter
if building KOM were deleted?

Database Systems 33

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34 Part1 Database Concepts

11. Using your school’s student information system, print your class schedule. The
schedule probably would contain the student identification number, student name,
class code, class name, class credit hours, class instructor name, the class meeting
days and times, and the class room number. Use Figure P1.11 as a template to com-
plete the following actions.

FIGURE P1.11 STUDENT SCHEDULE DATA FORMAT

STU_ID | STU_ CLASS_ | CLASS_ | CLASS_ | INSTR_ CLASS_ | CLASS_ |ROOM

NAME CODE NAME CREDHRS | NAME DLV TIMES

a. Create a spreadsheet using the template shown in Figure P1.11 and enter your current class schedule.
b. Enter the class schedule of two of your classmates into the same spreadsheet.

c. Discuss the redundancies and anomalies caused by this design.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data Models

In this chapter, you will learn:

« About data modeling and why data models are important

« About the basic data-modeling building blocks

« What business rules are and how they influence database design

« How the major data models evolved

« About emerging alternative data models and the needs they fulfill
« How data models can be classified by their level of abstraction

Preview

This chapter examines data modeling. Data modeling is the first step in the database
design journey, serving as a bridge between real-world objects and the computer database.

One of the most vexing problems of database design is that designers, programmers,
and end users see data in different ways. Consequently, different views of the same data
can lead to database designs that do not reflect an organization’s actual operation, thus
failing to meet end-user needs and data efficiency requirements. To avoid such failures,
database designers must obtain a precise description of the data’s nature and many uses
within the organization. Communication among database designers, programmers, and
end users should be frequent and clear. Data modeling clarifies such communication by
reducing the complexities of database design to more easily understood abstractions that
define entities, relations, and data transformations.

First, you will learn some basic data-modeling concepts and how current data models
developed from earlier models. Tracing the development of those database models will
help you understand the database design and implementation issues that are addressed
in the rest of this book. In chronological order, you will be introduced to the hierarchical
and network models, the relational model, and the entity relationship (ER) model. You
will also learn about the use of the entity relationship diagram (ERD) as a data-modeling
tool and the different notations used for ER diagrams. Next, you will be introduced to the
object-oriented model and the object/relational model. Then, you will learn about the
emerging NoSQL data model and how it is being used to fulfill the current need to man-
age very large social media data sets efficiently and effectively. Finally, you will learn how
various degrees of data abstraction help reconcile varying views of the same data.

Data Files and Available Formats

[MS Access| Oracie | MSSOL § MySOL | [MS Access| Oracle §| MSSOL § My SOL |
CHO2_InsureCo v v v v' CHO02_DealCo v v v v
CHO2_TinyCollege v v v v

Data Files Available on cengagebrain.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36 Part1 Database Concepts

data modeling

The process of creating
a specific data model for
a determined problem
domain.

data model

A representation,
usually graphic, of a
complex “real-world”
data structure. Data
models are used in the
database design phase
of the Database Life
Cycle.

Note

2-1 Data Modeling and Data Models

Database design focuses on how the database structure will be used to store and
manage end-user data. Data modeling, the first step in designing a database, refers
to the process of creating a specific data model for a determined problem domain.
(A problem domain is a clearly defined area within the real-world environment,
with a well-defined scope and boundaries that will be systematically addressed.) A
data model is a relatively simple representation, usually graphical, of more complex
real-world data structures. In general terms, a model is an abstraction of a more
complex real-world object or event. A model’s main function is to help you under-
stand the complexities of the real-world environment. Within the database environ-
ment, a data model represents data structures and their characteristics, relations,
constraints, transformations, and other constructs with the purpose of supporting
a specific problem domain.

The terms data model and database model are often used interchangeably. In this book, the
term database model is used to refer to the implementation of a data model in a specific

database system.

Note

Data modeling is an iterative, progressive process. You start with a simple under-
standing of the problem domain, and as your understanding increases, so does the
level of detail of the data model. When done properly, the final data model effectively
is a “blueprint” with all the instructions to build a database that will meet all end-user
requirements. This blueprint is narrative and graphical in nature, meaning that it con-
tains both text descriptions in plain, unambiguous language and clear, useful diagrams
depicting the main data elements.

An implementation-ready data model should contain at least the following components:

» A description of the data structure that will store the end-user data

« A set of enforceable rules to guarantee the integrity of the data

» A data manipulation methodology to support the real-world data transformations

Traditionally, database designers relied on good judgment to help them develop a
good data model. Unfortunately, good judgment is often in the eye of the beholder, and
it often develops after much trial and error. For example, if each student in this class has
to create a data model for a video store, it is very likely that each will come up with a
different model. Which one would be correct? The simple answer is “the one that meets
all the end-user requirements,” and there may be more than one correct solution! For-
tunately, database designers make use of existing data-modeling constructs and power-
ful database design tools that substantially diminish the potential for errors in database
modeling. In the following sections, you will learn how existing data models are used to
represent real-world data and how the different degrees of data abstraction facilitate data
modeling.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2-2 The Importance of Data Models

Data models can facilitate interaction among the designer, the applications programmer,
and the end user. A well-developed data model can even foster improved understanding
of the organization for which the database design is developed. In short, data models are
a communication tool. This important aspect of data modeling was summed up neatly
by a client whose reaction was as follows: “I created this business, I worked with this
business for years, and this is the first time I've really understood how all the pieces really
fit together”

The importance of data modeling cannot be overstated. Data constitutes the most
basic information employed by a system. Applications are created to manage data and
to help transform data into information, but data is viewed in different ways by different
people. For example, contrast the view of a company manager with that of a company
clerk. Although both work for the same company, the manager is more likely to have an
enterprise-wide view of company data than the clerk.

Even different managers view data differently. For example, a company president is
likely to take a universal view of the data because he or she must be able to tie the com-
pany’s divisions to a common (database) vision. A purchasing manager in the same com-
pany is likely to have a more restricted view of the data, as is the company’s inventory
manager. In effect, each department manager works with a subset of the company’s data.
The inventory manager is more concerned about inventory levels, while the purchasing
manager is more concerned about the cost of items and about relationships with the
suppliers of those items.

Applications programmers have yet another view of data, being more concerned with
data location, formatting, and specific reporting requirements. Basically, applications
programmers translate company policies and procedures from a variety of sources into
appropriate interfaces, reports, and query screens.

The different users and producers of data and information often reflect the fable of the
blind people and the elephant: the blind person who felt the elephant’s trunk had quite
a different view from the one who felt the elephant’s leg or tail. A view of the whole ele-
phant is needed. Similarly, a house is not a random collection of rooms; to build a house,
a person should first have the overall view that is provided by blueprints. Likewise, a
sound data environment requires an overall database blueprint based on an appropriate
data model.

When a good database blueprint is available, it does not matter that an applications
programmer’s view of the data is different from that of the manager or the end user. Con-
versely, when a good database blueprint is not available, problems are likely to ensue. For
instance, an inventory management program and an order entry system may use con-
flicting product-numbering schemes, thereby costing the company thousands or even
millions of dollars.

Keep in mind that a house blueprint is an abstraction; you cannot live in the blueprint.
Similarly, the data model is an abstraction; you cannot draw the required data out of the
data model. Just as you are not likely to build a good house without a blueprint, you are
equally unlikely to create a good database without first creating an appropriate data model.

2-3 Data Model Basic Building Blocks

The basic building blocks of all data models are entities, attributes, relationships, and con-
straints. An entity is a person, place, thing, or event about which data will be collected

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppresse
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time

Chapter 2 Data Models 37

entity

A person, place, thing,
concept, or event for
which data can be
stored. See also attribute.

d from the eBook and/or eChapter(s).
if subsequent rights restrictions require it.

38 Part1 Database Concepts

attribute

A characteristic of an
entity or object. An
attribute has a name and
a data type.

relationship
An association between
entities.

one-to-many (1:M or
1..*) relationship
Associations among two
or more entities that are
used by data models.
Ina 1:M relationship,
one entity instance is
associated with many
instances of the related
entity.

many-to-many (M:N
or *..*) relationship
Association among two
or more entities in which
one occurrence of an
entity is associated with
many occurrences of a
related entity and one
occurrence of the related
entity is associated with
many occurrences of the
first entity.

one-to-one (1:1 or
1..1) relationship
Associations among two
or more entities that are
used by data models.
Ina 1:1 relationship,

one entity instance is
associated with only one
instance of the related
entity.

constraint

A restriction placed
on data, usually
expressed in the form
of rules. For example,
“A student’s GPA must
be between 0.00 and
4.00" Constraints are
important because they
help to ensure data
integrity.

and stored. An entity represents a particular type of object in the real world, which means
an entity is “distinguishable”’—that is, each entity occurrence is unique and distinct. For
example, a CUSTOMER entity would have many distinguishable customer occurrences,
such as John Smith, Pedro Dinamita, and Tom Strickland. Entities may be physical objects,
such as customers or products, but entities may also be abstractions, such as flight routes
or musical concerts.

An attribute is a characteristic of an entity. For example, a CUSTOMER entity would
be described by attributes such as customer last name, customer first name, customer
phone number, customer address, and customer credit limit. Attributes are the equiva-
lent of fields in file systems.

A relationship describes an association among entities. For example, a relationship
exists between customers and agents that can be described as follows: an agent can serve
many customers, and each customer may be served by one agent. Data models use three
types of relationships: one-to-many, many-to-many, and one-to-one. Database designers
usually use the shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively.
(Although the M:N notation is a standard label for the many-to-many relationship, the
label M:M may also be used.) The following examples illustrate the distinctions among
the three relationships.

« One-to-many (1:M or 1..*) relationship. A painter creates many different paintings,
but each is painted by only one painter. Thus, the painter (the “one”) is related to the
paintings (the “many”). Therefore, database designers label the relationship “PAINTER
paints PAINTING” as 1:M. Note that entity names are often capitalized as a conven-
tion, so they are easily identified. Similarly, a customer (the “one”) may generate many
invoices, but each invoice (the “many”) is generated by only a single customer. The
“CUSTOMER generates INVOICE” relationship would also be labeled 1:M.

« Many-to-many (M:N or *..*¥) relationship. An employee may learn many job skills,
and each job skill may be learned by many employees. Database designers label the
relationship “EMPLOYEE learns SKILL” as M:N. Similarly, a student can take many
classes and each class can be taken by many students, thus yielding the M:N label for
the relationship expressed by “STUDENT takes CLASS”

o One-to-one (1:1 or 1..1) relationship. A retail company’s management structure
may require that each of its stores be managed by a single employee. In turn, each
store manager, who is an employee, manages only a single store. Therefore, the rela-
tionship “EMPLOYEE manages STORE” is labeled 1:1.

The preceding discussion identified each relationship in both directions; that is, rela-
tionships are bidirectional:

« One CUSTOMER can generate many INVOICEs.
« Each of the many INVOICEs is generated by only one CUSTOMER.

A constraint is a restriction placed on the data. Constraints are important because
they help to ensure data integrity. Constraints are normally expressed in the form of
rules:

« An employee’s salary must have values that are between 6,000 and 350,000.
+ A student’s GPA must be between 0.00 and 4.00.
« Each class must have one and only one teacher.

How do you properly identify entities, attributes, relationships, and constraints?
The first step is to clearly identify the business rules for the problem domain you are
modeling.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2-4 Business Rules

When database designers go about selecting or determining the entities, attributes,
and relationships that will be used to build a data model, they might start by gaining
a thorough understanding of what types of data exist in an organization, how the data
is used, and in what time frames it is used. But such data and information do not, by
themselves, yield the required understanding of the total business. From a database
point of view, the collection of data becomes meaningful only when it reflects properly
defined business rules. A business rule is a brief, precise, and unambiguous descrip-
tion of a policy, procedure, or principle within a specific organization. In a sense, busi-
ness rules are misnamed: they apply to any organization, large or small—a business, a
government unit, a religious group, or a research laboratory—that stores and uses data
to generate information.

Business rules derived from a detailed description of an organization’s operations
help to create and enforce actions within that organization’s environment. Business
rules must be rendered in writing and updated to reflect any change in the organiza-
tion’s operational environment.

Properly written business rules are used to define entities, attributes, relationships,
and constraints. Any time you see relationship statements such as “an agent can serve
many customers, and each customer can be served by only one agent,” business rules are
at work. You will see the application of business rules throughout this book, especially in
the chapters devoted to data modeling and database design.

To be effective, business rules must be easy to understand and widely disseminated
to ensure that every person in the organization shares a common interpretation of the
rules. Business rules describe, in simple language, the main and distinguishing charac-
teristics of the data as viewed by the company. Examples of business rules are as follows:

» A customer may generate many invoices.
« An invoice is generated by only one customer.

A training session cannot be scheduled for fewer than 10 employees or for more than
30 employees.

Note that those business rules establish entities, relationships, and constraints. For
example, the first two business rules establish two entities (CUSTOMER and INVOICE)
and a 1:M relationship between those two entities. The third business rule estab-
lishes a constraint (no fewer than 10 people and no more than 30 people), two entities
(EMPLOYEE and TRAINING), and also implies a relationship between EMPLOYEE
and TRAINING.

2-4a Discovering Business Rules

The main sources of business rules are company managers, policy makers, department
managers, and written documentation such as a company’s procedures, standards, and
operations manuals. A faster and more direct source of business rules is direct interviews
with end users. Unfortunately, because perceptions differ, end users are sometimes a less
reliable source when it comes to specifying business rules. For example, a maintenance
department mechanic might believe that any mechanic can initiate a maintenance pro-
cedure, when actually only mechanics with inspection authorization can perform such
a task. Such a distinction might seem trivial, but it can have major legal consequences.
Although end users are crucial contributors to the development of business rules, it pays
to verify end-user perceptions. Too often, interviews with several people who perform the

Chapter2 Data Models 39

business rule

A description of a policy,
procedure, or principle
within an organization.
For example, a pilot
cannot be on duty for
more than 10 hours
during a 24-hour period,
or a professor may teach
up to four classes during
a semester.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time

if subsequent rights restrictions require it.

40 Part1

Database Concepts

same job yield very different perceptions of what the job components are. While such a
discovery may point to “management problems,” that general diagnosis does not help
the database designer. The database designer’s job is to reconcile such differences and
verify the results of the reconciliation to ensure that the business rules are appropriate
and accurate.

The process of identifying and documenting business rules is essential to database
design for several reasons:

o It helps to standardize the company’s view of data.

o It can be a communication tool between users and designers.

o Itallows the designer to understand the nature, role, and scope of the data.
o Itallows the designer to understand business processes.

o It allows the designer to develop appropriate relationship participation rules and
constraints and to create an accurate data model.

Of course, not all business rules can be modeled. For example, a business rule that
specifies “no pilot can fly more than 10 hours within any 24-hour period” cannot be
modeled in the database model directly. However, such a business rule can be repre-
sented and enforced by application software.

2-4b Translating Business Rules into Data Model
Components

Business rules set the stage for the proper identification of entities, attributes, rela-
tionships, and constraints. In the real world, names are used to identify objects. If the
business environment wants to keep track of the objects, there will be specific business
rules for the objects. As a general rule, a noun in a business rule will translate into an
entity in the model, and a verb (active or passive) that associates the nouns will trans-
late into a relationship among the entities. For example, the business rule “a customer
may generate many invoices” contains two nouns (customer and invoices) and a verb
(generate) that associates the nouns. From this business rule, you could deduce the
following:

 Customer and invoice are objects of interest for the environment and should be repre-
sented by their respective entities.

 There is a generate relationship between customer and invoice.

To properly identify the type of relationship, you should consider that relationships
are bidirectional; that is, they go both ways. For example, the business rule “a cus-
tomer may generate many invoices” is complemented by the business rule “an invoice
is generated by only one customer.” In that case, the relationship is one-to-many (1:M).
Customer is the “1” side, and invoice is the “many” side.

As a general rule, to properly identify the relationship type, you should ask two
questions:

« How many instances of B are related to one instance of A?
« How many instances of A are related to one instance of B?

For example, you can assess the relationship between student and class by asking two
questions:

« In how many classes can one student enroll? Answer: many classes.

« How many students can enroll in one class? Answer: many students.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 41

Therefore, the relationship between student and class is many-to-many (M:N). You
will have many opportunities to determine the relationships between entities as you
proceed through this book, and soon the process will become second nature.

2-4c Naming Conventions

During the translation of business rules to data model components, you identify entities,
attributes, relationships, and constraints. This identification process includes naming the
object in a way that makes it unique and distinguishable from other objects in the prob-
lem domain. Therefore, it is important to pay special attention to how you name the
objects you are discovering.

Entity names should be descriptive of the objects in the business environment and
use terminology that is familiar to the users. An attribute name should also be descrip-
tive of the data represented by that attribute. It is also a good practice to prefix the
name of an attribute with the name or abbreviation of the entity in which it occurs.
For example, in the CUSTOMER entity, the customer’s credit limit may be called
CUS_CREDIT_LIMIT. The CUS indicates that the attribute is descriptive of the
CUSTOMER entity, while CREDIT_LIMIT makes it easy to recognize the data that
will be contained in the attribute. This will become increasingly important in later
chapters when you learn about the need to use common attributes to specify relation-
ships between entities. The use of a proper naming convention will improve the data
model’s ability to facilitate communication among the designer, application program-
mer, and the end user. In fact, a proper naming convention can go a long way toward
making your model self-documenting.

2-5 The Evolution of Data Models

The quest for better data management has led to several models that attempt to resolve
the previous model’s critical shortcomings and to provide solutions to ever-evolving data
management needs. These models represent schools of thought as to what a database
is, what it should do, the types of structures that it should employ, and the technology
that would be used to implement these structures. Perhaps confusingly, these models are
called data models, as are the graphical data models discussed earlier in this chapter. This
section gives an overview of the major data models in roughly chronological order. You
will discover that many of the “new” database concepts and structures bear a remarkable
resemblance to some of the “old” data model concepts and structures. Table 2.1 traces the
evolution of the major data models.

2-5a Hierarchical and Network Models

The hierarchical model was developed in the 1960s to manage large amounts of data for
complex manufacturing projects, such as the Apollo rocket that landed on the moon in 1969.
The model’s basic logical structure is represented by an upside-down tree. The hierarchical
structure contains levels, or segments. A segment is the equivalent of a file system’s record
type. Within the hierarchy, a higher layer is perceived as the parent of the segment directly
beneath it, which is called the child. The hierarchical model depicts a set of one-to-many
(1:M) relationships between a parent and its children segments. (Each parent can have many
children, but each child has only one parent.)

The network model was created to represent complex data relationships more effec-
tively than the hierarchical model, to improve database performance, and to impose a
database standard. In the network model, the user perceives the network database as a

Online ¢
Content

The hierarchical and
network models are
largely of historical
interest, yet they do
contain some ele-
ments and features
that interest current
database profession-
als. The technical
details of those two
models are discussed
in Appendixes K and
L, respectively, which
are available at www.
cengagebrain.com.
Appendix G is devoted
to the object-oriented
(O0) model. However,
given the dominant
market presence of the
relational model, most
of the book focuses on
the relational model.

hierarchical model
An early database model
whose basic concepts
and characteristics
formed the basis for
subsequent database
development. This
model is based on

an upside-down tree
structure in which

each record is called a
segment. The top record
is the root segment.
Each segment has a

1:M relationship to

the segment directly
below it.

segment

In the hierarchical data
model, the equivalent
of a file system’s record

type.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42 Part1 Database Concepts

TABLE 2.1
EVOLUTION OF MAJOR DATA MODELS
GENERATION TIME DATA MODEL EXAMPLES COMMENTS
First 1960s-1970s File system VMS/VSAM Used mainly on IBM mainframe systems
Managed records, not relationships
Second 1970s Hierarchical and IMS, ADABAS, IDS-II Early database systems
network Navigational access
Third Mid-1970s Relational DB2 Conceptual simplicity
Oracle Entity relationship (ER) modeling and support
MS for relational data modeling
SQL Server
MySQL
Fourth Mid-1980s Object-oriented Versant Object/relational supports object data types
Object/relational Objectivity/DB Star Schema support for data warehousing
(O/R) DB2 UDB Web databases become common
Oracle 12c
Fifth Mid-1990s XML Hybrid DBMS | dbXML Unstructured data support
Tamino O/R model supports XML
DB2 UDB documents
Oracle 12¢ Hybrid DBMS adds object front end to relational
MS SQL Server databases
Support large databases (terabyte size)
Emerging Early 2000s to | Key-value store SimpleDB (Amazon) Distributed, highly scalable
Models: present Column store BigTable (Google) High performance, fault tolerant
NoSQL Cassandra (Apache) Very large storage (petabytes)
MongoDB Suited for sparse data
Riak Proprietary application programming interface
(API)

collection of records in 1:M relationships. However, unlike the hierarchical model, the
network model

An early data model that network model allows a record to have more than one parent. While the network data-
represented data as a base model is generally not used today, the definitions of standard database concepts
collection of record types that emerged with the network model are still used by modern data models:

in 1:M relationships.
schema « The schema is the conceptual organization of the entire database as viewed by the

A logical grouping of database administrator.

database objects, such + The subschema defines the portion of the database “seen” by the application programs
as tables, indexes, views,

and queries, that are that actually produce the desired information from the data within the database.

related to each other. « A data manipulation language (DML) defines the environment in which data can

subschema be managed and is used to work with the data in the database.

The portion of the

database that interacts o A schema data definition language (DDL) enables the database administrator to
with application define the schema components.

programs.

data manipulation As information needs grew and more sophisticated databases and applications were
language (DML) required, the network model became too cumbersome. The lack of ad hoc query capa-
The set of commands bility put heavy pressure on programmers to generate the code required to produce even
that allows an end user the simplest reports. Although the existing databases provided limited data indepen-
to manipulate the data dence, any structural change in the database could still produce havoc in all application
in the database, such as . .
SELECT INSERT UPDATE programs that drew data from the database. Because of the disadvantages of the hierar-
DELETE, COMMIT, and chical and network models, they were largely replaced by the relational data model in

ROLLBACK. the 1980s.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 43

2-5b The Relational Model

The relational model was introduced in 1970 by E. E. Codd of IBM in his landmark
paper “A Relational Model of Data for Large Shared Databanks” (Communications of the
ACM, June 1970, pp. 377-387). The relational model represented a major breakthrough
for both users and designers. To use an analogy, the relational model produced an “auto-
matic transmission” database to replace the “standard transmission” databases that pre-
ceded it. Its conceptual simplicity set the stage for a genuine database revolution.

Note

The relational database model presented in this chapter is an introduction and an over-
view. A more detailed discussion is in Chapter 3, The Relational Database Model. In fact,
the relational model is so important that it will serve as the basis for discussions in most of
the remaining chapters.

The relational model’s foundation is a mathematical concept known as a relation.
To avoid the complexity of abstract mathematical theory, you can think of a relation
(sometimes called a table) as a two-dimensional structure composed of intersecting
rows and columns. Each row in a relation is called a tuple. Each column represents an
attribute. The relational model also describes a precise set of data manipulation con-
structs based on advanced mathematical concepts.

In 1970, Codd’s work was considered ingenious but impractical. The relational
model’s conceptual simplicity was bought at the expense of computer overhead; com-
puters at that time lacked the power to implement the relational model. Fortunately,
computer power grew exponentially, as did operating system efficiency. Better yet, the
cost of computers diminished rapidly as their power grew. Today, even PCs, which
cost a fraction of what their mainframe ancestors cost, can run sophisticated relational
database software such as Oracle, DB2, Microsoft SQL Server, MySQL, and other
mainframe relational software.

The relational data model is implemented through a very sophisticated relational
database management system (RDBMS). The RDBMS performs the same basic func-
tions provided by the hierarchical and network DBMS systems, in addition to a host of
other functions that make the relational data model easier to understand and implement
(as outlined in Chapter 1, in the DBMS Functions section).

Arguably the most important advantage of the RDBMS is its ability to hide the com-
plexities of the relational model from the user. The RDBMS manages all of the physical
details, while the user sees the relational database as a collection of tables in which data
is stored. The user can manipulate and query the data in a way that seems intuitive and
logical.

Tables are related to each other through the sharing of a common attribute (a value in
a column). For example, the CUSTOMER table in Figure 2.1 might contain a sales agent’s
number that is also contained in the AGENT table.

The common link between the CUSTOMER and AGENT tables enables you to match
the customer to his or her sales agent, even though the customer data is stored in one
table and the sales representative data is stored in another table. For example, you can
easily determine that customer Dunne’s agent is Alex Alby because for customer Dunne,
the CUSTOMER table’s AGENT_CODE is 501, which matches the AGENT table’s

data definition
language (DDL)

The language that allows
a database administrator
to define the database
structure, schema, and
subschema.

relational model
Developed by E. F. Codd
of IBM in 1970, the
relational model is based
on mathematical set
theory and represents
data as independent
relations. Each relation
(table) is conceptually
represented as a two-
dimensional structure
of intersecting rows and
columns. The relations
are related to each other
through the sharing

of common entity
characteristics (values in
columns).

table (relation)
Alogical construct
perceived to be a two-
dimensional structure
composed of intersecting
rows (entities) and
columns (attributes) that
represents an entity setin
the relational model.

tuple
In the relational model, a
table row.

relational database
management system
(RDBMS)

A collection of programs
that manages a relational
database. The RDBMS
software translates a
user’s logical requests
(queries) into commands
that physically locate
and retrieve the
requested data.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

44 Part1

Database Concepts

FIGURE 2.1 LINKING RELATIONAL TABLES

Table name: AGENT (first six attributes)

Database name: Ch02_InsureCo

AGENT_CODE' AGENT_LNAME | AGENT_FNAME| AGENT_IMITIAL | AGENT_AREACODE | AGENT_PHOME

01 Ay
02 Hahn
303 Ckon

Alex B 713 228-1249
Leah F B13 go2-1244
John T 513 123-5559

Link through AGENT_CODE

Table name: CUSTOMER

CUS_CODE [CUS_LNAME [cUS_FriaME [CUS_INTIAL [CUS_AREACODE [CUS_PHONE [CUS_INSURE_TYPE [CUS_INSURE_AMT [CUS_RENEW_DATE [AGENT_CODE

10010 | Ramas
10011 | Dunne
10012 | Smith
40013 Olavweski
10014 | Crlando
10015 O'Brian
0016 | Brown
10017 | wWilliams
10018 | Farrizs
10019| Smith

Online
Content

This chapter’s data-
bases are available at
www.cengagebrain
.com. For example, the
contents of the AGENT
and CUSTOMER tables
shown in Figure 2.1 are
in the database named
Ch02_InsureCo.

relational diagram
A graphical
representation of a
relational database’s
entities, the attributes
within those entities,
and the relationships
among the entities.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Alfred A B15 044-2573 T 100.00 05-Apr-2016 502
Leona K 3 94-12355 T 230.00 16-Jun-2016 am
Kathy W B15 094-2255 =2 150.00 29-Jan-2017 502
Paul F B15 894-2150 =1 300.00 14-0ct-2016 502
hdyron 613 2221672 T 100.00 28-Dec-2017 am
Ay B 713 442-3351 T2 450.00 22-Sep-2016 503
James G B15 2971228 =1 120.00 29-Mar-2017 502
George G135 290-2556 =1 230.00 A7-Jul-2016 a3
Anne G 713 382-71585 T2 100.00 03-Dec-2016 s
Olette K B15 297-3809 52 S00.00 14-har-2017 503

AGENT_CODE for Alex Alby. Although the tables are independent of one another, you
can easily associate the data between tables. The relational model provides a minimum
level of controlled redundancy to eliminate most of the redundancies commonly found
in file systems.

The relationship type (1:1, 1:M, or M:N) is often shown in a relational schema, an
example of which is shown in Figure 2.2. A relational diagram is a representation of the
relational database’s entities, the attributes within those entities, and the relationships
between those entities.

In Figure 2.2, the relational diagram shows the connecting fields (in this case,
AGENT_CODE) and the relationship type (1:M). Microsoft Access, the database soft-
ware application used to generate Figure 2.2, employs the infinity symbol (<o) to indicate
the “many” side. In this example, the CUSTOMER represents the “many” side because
an AGENT can have many CUSTOMERs. The AGENT represents the “1” side because
each CUSTOMER has only one AGENT.

A relational table stores a collection of related entities. In this respect, the relational
database table resembles a file, but there is a crucial difference between a table and a file:

FIGURE 2.2 A RELATIONAL DIAGRAM

AGENT_ADDRESS
AGENT_CITY
AGENT_STATE
AGENT ZIP
AGENT_DATE_HIRED
AGENT YTD_PAY
AGENT YTD_FIT
AGENT YTD_FICA
AGENT YTD_5LS
AGENT_DEP

AGENT . CUSTOMER
¥ AGENT_CODE f ' cus cope
AGENT_LNAME CUS_LNAME
AGENT_FNAME CUS_FNAME
AGENT_INTTIAL CUS_INTIAL
AGENT_AREACODE CUS_AREACODE
AGENT_PHONE CUS_PHONE

CUS_INSURE_TYPE
CUS_INSURE_AMT
CUS_RENEW. DATE
AGENT_CODE

Chapter2 Data Models 45

a table yields complete data and structural independence because it is a purely logical
structure. How the data is physically stored in the database is of no concern to the user
or the designer; the perception is what counts. This property of the relational data model,
which is explored in depth in the next chapter, became the source of a real database
revolution.

Another reason for the relational data model’s rise to dominance is its powerful and
flexible query language. Most relational database software uses Structured Query Lan-
guage (SQL), which allows the user to specify what must be done without specifying
how. The RDBMS uses SQL to translate user queries into instructions for retrieving the
requested data. SQL makes it possible to retrieve data with far less effort than any other
database or file environment.

From an end-user perspective, any SQL-based relational database application involves
three parts: a user interface, a set of tables stored in the database, and the SQL “engine.”
Each of these parts is explained as follows:

o The end-user interface. Basically, the interface allows the end user to interact with
the data (by automatically generating SQL code). Each interface is a product of
the software vendor’s idea of meaningful interaction with the data. You can also
design your own customized interface with the help of application generators that
are now standard fare in the database software arena.

o A collection of tables stored in the database. In a relational database, all data is per-
ceived to be stored in tables. The tables simply “present” the data to the end user in a
way that is easy to understand. Each table is independent. Rows in different tables are
related by common values in common attributes.

o SQL engine. Largely hidden from the end user, the SQL engine executes all que-
ries, or data requests. Keep in mind that the SQL engine is part of the DBMS
software. The end user uses SQL to create table structures and to perform data
access and table maintenance. The SQL engine processes all user requests—largely
behind the scenes and without the end user’s knowledge. Hence, SQL is said to be
a declarative language that tells what must be done but not how. (You will learn
more about the SQL engine in Chapter 11, Database Performance Tuning and
Query Optimization.)

Because the RDBMS performs some tasks behind the scenes, it is not necessary to
focus on the physical aspects of the database. Instead, the following chapters concentrate
on the logical portion of the relational database and its design. Furthermore, SQL is cov-
ered in detail in Chapter 7, Introduction to Structured Query Language (SQL), and in
Chapter 8, Advanced SQL.

2-5¢ The Entity Relationship Model

The conceptual simplicity of relational database technology triggered the demand for
RDBMSs. In turn, the rapidly increasing requirements for transaction and information
created the need for more complex database implementation structures, thus creating
the need for more effective database design tools. (Building a skyscraper requires more
detailed design activities than building a doghouse, for example.)

Complex design activities require conceptual simplicity to yield successful results.
Although the relational model was a vast improvement over the hierarchical and net-
work models, it still lacked the features that would make it an effective database design
tool. Because it is easier to examine structures graphically than to describe them in text,

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46 Part1

entity relationship
(ER) model (ERM)
A data model that
describes relationships
(1:1, 1:M, and M:N)
among entities at the
conceptual level with
the help of ER diagrams.
The model was
developed by

Peter Chen.

entity relationship
diagram (ERD)

A diagram that depicts
an entity relationship
model’s entities,
attributes, and relations.

entity instance
(entity occurrence)
A row in a relational
table.

entity set
A collection of like
entities.

connectivity

The type of relationship
between entities.
Classifications include
1:1, 1:M, and M:N.

Chen notation
See entity relationship
(ER) model.

Crow’s Foot notation
A representation of

the entity relationship
diagram that uses a
three-pronged symbol
to represent the “many”
sides of the relationship.

class diagram
notation

The set of symbols used
in the creation of class
diagrams.

Database Concepts

database designers prefer to use a graphical tool in which entities and their relationships
are pictured. Thus, the entity relationship (ER) model, or ERM, has become a widely
accepted standard for data modeling.

Peter Chen first introduced the ER data model in 1976; the graphical representa-
tion of entities and their relationships in a database structure quickly became popu-
lar because it complemented the relational data model concepts. The relational data
model and ERM combined to provide the foundation for tightly structured database
design. ER models are normally represented in an entity relationship diagram
(ERD), which uses graphical representations to model database components. You
will learn how to use ERDs to design databases in Chapter 4, Entity Relationship
(ER) Modeling.

The ER model is based on the following components:

o Entity. Earlier in this chapter, an entity was defined as anything about which data
will be collected and stored. An entity is represented in the ERD by a rectangle, also
known as an entity box. The name of the entity, a noun, is written in the center of
the rectangle. The entity name is generally written in capital letters and in singular
form: PAINTER rather than PAINTERS, and EMPLOYEE rather than EMPLOYEES.
Usually, when applying the ERD to the relational model, an entity is mapped to a rela-
tional table. Each row in the relational table is known as an entity instance or entity
occurrence in the ER model. A collection of like entities is known as an entity set.
For example, you can think of the AGENT file in Figure 2.1 as a collection of three
agents (entities) in the AGENT entity set. Technically speaking, the ERD depicts entity
sets. Unfortunately, ERD designers use the word entity as a substitute for entity set,
and this book will conform to that established practice when discussing any ERD and
its components.

« Each entity consists of a set of attributes that describes particular characteristics of
the entity. For example, the entity EMPLOYEE will have attributes such as a Social
Security number, a last name, and a first name. (Chapter 4 explains how attributes are
included in the ERD.)

 Relationships. Relationships describe associations among data. Most relationships
describe associations between two entities. When the basic data model compo-
nents were introduced, three types of data relationships were illustrated: one-
to-many (1:M), many-to-many (M:N), and one-to-one (1:1). The ER model uses
the term connectivity to label the relationship types. The name of the relation-
ship is usually an active or passive verb. For example, a PAINTER paints many
PAINTINGs, an EMPLOYEE learns many SKILLs, and an EMPLOYEE manages
a STORE.

Figure 2.3 shows the different types of relationships using three ER notations: the
original Chen notation, the Crow’s Foot notation, and the newer class diagram
notation, which is part of the Unified Modeling Language (UML).

The left side of the ER diagram shows the Chen notation, based on Peter Chen’s
landmark paper. In this notation, the connectivities are written next to each entity box.
Relationships are represented by a diamond connected to the related entities through a
relationship line. The relationship name is written inside the diamond.

The middle of Figure 2.3 illustrates the Crow’s Foot notation. The name Crow’s Foot
is derived from the three-pronged symbol used to represent the “many” side of the
relationship. As you examine the basic Crow’s Foot ERD in Figure 2.3, note that the
connectivities are represented by symbols. For example, the “1” is represented by a
short line segment, and the “M” is represented by the three-pronged “crow’s foot.” In
this example, the relationship name is written above the relationship line.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Data Models 47

FIGURE 2.3 THE ER MODEL NOTATIONS

Chen Notation Crow’s Foot Notation

UML Class

Diagram Notation
A One-to-Many {1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER.

PAINTER PAINTING PAINTER | 1.

PAINTER PAINTING

'

PAINTING

1 il

" paints I l

paires painted by

A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learnec by many EMPLOYEEs.

EMPLOYEE SKILL EMPLOYEE | -

1.

SKILL

SKILL learns

M N
EMPLOYEE

leamna leamed by

A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE: each STORE is managed by one EMPLOYEE.

EMPLOYEE STORE

EMPLOYEE | 1,

1 STORE

EMPLOYEE

1 1
e H———H

The right side of Figure 2.3 shows the UML notation (also known as the UML
class notation). Note that the connectivities are represented by lines with symbols
(1..1, 1..%). Also, the UML notation uses names in both sides of the relationship.
For example, to read the relationship between PAINTER and PAINTING, note the
following:

o A PAINTER “paints” one to many PAINTINGs, as indicated by the 1..* symbol.
« A PAINTING is “painted by” one and only one PAINTER, as indicated by the 1..1 symbol.

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to
recognize them. However, you will learn in Chapter 3 that M:N relationships are not appro-
priate in a relational model. For that reason, Microsoft Visio does not support the M:N rela-
tionship directly. Therefore, to illustrate the existence of an M:N relationship using Visio, you
have to change the line style of the connector (see Appendix A, Designing Databases with
Visio Professional: A Tutorial, at www.cengagebrain.com).

In Figure 2.3, entities and relationships are shown in a horizontal format, but they
may also be oriented vertically. The entity location and the order in which the entities are
presented are immaterial; just remember to read a 1:M relationship from the “1” side to
the “M” side.

The Crow’s Foot notation is used as the design standard in this book. However, the
Chen notation is used to illustrate some of the ER modeling concepts whenever necessary.
Most data modeling tools let you select the Crow’s Foot or UML class diagram notation.

mensges
e anaged by

Online
Content

Aside from the Chen,
Crow’s Foot, and UML
notations, there are
other ER model nota-
tions. For a summary of
ER model notation sym-
bols, see Appendix E,
Comparison of ER Model
Notations, at www.
cengagebrain.com.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48 Part1 Database Concepts

Microsoft Visio Professional software was used to generate the Crow’s Foot designs you
will see in subsequent chapters.

The ER model’s exceptional visual simplicity makes it the dominant database model-
ing and design tool. Nevertheless, the search for better data-modeling tools continues as
the data environment continues to evolve.

Online
Content

This chapter introduces
only basic OO con-
cepts. You can exam-
ine object-orientation
concepts and princi-
ples in detail in Appen-
dix G, Object-Oriented

2-5d The Object-Oriented (O0O) Model

Increasingly complex real-world problems demonstrated a need for a data model that more
closely represented the real world. In the object-oriented data model (OODM), both data

Databases, at www.

cengagebrain.com.

object-oriented data
model (OODM)

A data model whose basic
modeling structure is an
object.

object

An abstract
representation of a real-
world entity that has a
unique identity, embed-
ded properties, and the
ability to interact with
other objects and itself.

object-oriented
database
management system
(OODBMS)

Data management
software used to
manage data in an
object-oriented
database model.

semantic data model
The first of a series of data
models that more closely
represented the real world,
modeling both data and
their relationships in a
single structure known

as an object. The SDM,
published in 1981, was
developed by M. Hammer
and D. MclLeod.

class

A collection of similar
objects with shared
structure (attributes) and
behavior (methods).

A class encapsulates

an object’s data
representation and a
method’s implementation.
Classes are organized in a
class hierarchy.

and its relationships are contained in a single structure known as an object. In turn, the
OODM is the basis for the object-oriented database management system (OODBMS).

An OODM reflects a very different way to define and use entities. Like the relational
model’s entity, an object is described by its factual content. But, quite unlike an entity, an
object includes information about relationships between the facts within the object, as
well as information about its relationships with other objects. Therefore, the facts within
the object are given greater meaning. The OODM is said to be a semantic data model
because semantic indicates meaning.

Subsequent OODM development has allowed an object also to contain all operations
that can be performed on it, such as changing its data values, finding a specific data value,
and printing data values. Because objects include data, various types of relationships,
and operational procedures, the object becomes self-contained, thus making it—at least
potentially—a basic building block for autonomous structures.

The OO data model is based on the following components:

» An object is an abstraction of a real-world entity. In general terms, an object may be
considered equivalent to an ER model’s entity. More precisely, an object represents
only one occurrence of an entity. (The object’s semantic content is defined through
several of the items in this list.)

+ Attributes describe the properties of an object. For example, a PERSON object
includes the attributes Name, Social Security Number, and Date of Birth.

« Objects that share similar characteristics are grouped in classes. A class is a collec-
tion of similar objects with shared structure (attributes) and behavior (methods). In a
general sense, a class resembles the ER model’s entity set. However, a class is different
from an entity set in that it contains a set of procedures known as methods. A class’s
method represents a real-world action such as finding a selected PERSON’s name,
changing a PERSON’s name, or printing a PERSON’s address. In other words, meth-
ods are the equivalent of procedures in traditional programming languages. In OO
terms, methods define an object’s behavior.

« Classes are organized in a class hierarchy. The class hierarchy resembles an
upside-down tree in which each class has only one parent. For example, the
CUSTOMER class and the EMPLOYEE class share a parent PERSON class. (Note the
similarity to the hierarchical data model in this respect.)

« Inheritance is the ability of an object within the class hierarchy to inherit the attri-
butes and methods of the classes above it. For example, two classes, CUSTOMER
and EMPLOYEE, can be created as subclasses from the class PERSON. In this case,
CUSTOMER and EMPLOYEE will inherit all attributes and methods from PERSON.

o Object-oriented data models are typically depicted using Unified Modeling
Language (UML) class diagrams. UML is a language based on OO concepts that
describes a set of diagrams and symbols you can use to graphically model a system.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Data Models 49

UML class diagrams are used to represent data and its relationships within the
larger UML object-oriented system’s modeling language. For a more complete
description of UML, see Appendix H, Unified Modeling Language (UML).

To illustrate the main concepts of the object-oriented data model, consider a simple
invoicing problem. In this case, invoices are generated by customers, each invoice ref-
erences one or more lines, and each line represents an item purchased by a customer.
Figure 2.4 illustrates the object representation for this simple invoicing problem, as well
as the equivalent UML class diagram and ER model. The object representation is a simple
way to visualize a single object occurrence.

method

In the object-oriented
data model, a named
set of instructions to
perform an action.
Methods represent
real-world actions, and
are invoked through
messages.

FIGURE 2.4 A COMPARISON OF OO, UML AND ER MODELS

Object Representation UML Class Diagram

ER Model

: OICE CUSTOMER | +generates +belongs to NVOICE CUSTOMER | generales INVOICE
LL
INV_DATE [VINV_NUMBER : Integer INV_NUMBER
1NV NUMBER 1.1 0.r [+INV DATE : Date INV_DATE
DR +INV_SHIP_DATE : Date INV_SHIP_DATE
mﬂ\}-"__iﬁgzﬁﬂ. INV_TOTAL : Double INV_TOTAL
Tl ! 1.1 +has
 Fond +belongs to
i LINE
———

As you examine Figure 2.4, note the following:

« The object representation of the INVOICE includes all related objects within the same
object box. Note that the connectivities (1 and M) indicate the relationship of the
related objects to the INVOICE. For example, the “1” next to the CUSTOMER object
indicates that each INVOICE is related to only one CUSTOMER. The “M” next to the
LINE object indicates that each INVOICE contains many LINEs.

o The UML class diagram uses three separate object classes (CUSTOMER, INVOICE,
and LINE) and two relationships to represent this simple invoicing problem. Note
that the relationship connectivities are represented by the 1..1, 0..%, and 1..* symbols,
and that the relationships are named in both ends to represent the different “roles”
that the objects play in the relationship.

o The ER model also uses three separate entities and two relationships to represent this
simple invoice problem.

The OODM advances influenced many areas, from system modeling to program-
ming. (Most contemporary programming languages have adopted OO concepts, includ-
ing Java, Ruby, Perl, C#, and Visual Studio .NET.) The added semantics of the OODM
allowed for a richer representation of complex objects. This in turn enabled applications
to support increasingly complex objects in innovative ways. As you will see in the next
section, such evolutionary advances also affected the relational model.

2-5e Object/Relational and XML

Facing the demand to support more complex data representations, the relational
model’s main vendors evolved the model further and created the extended

class hierarchy

The organization of
classes in a hierarchical
tree in which each
parent class is a
superclass and each child
class is a subclass. See
also inheritance.

inheritance

In the object-oriented data
model, the ability of an
object to inherit the data
structure and methods of
the classes above it in the
class hierarchy. See also
class hierarchy.

Unified Modeling
Language (UML)

A language based on
object-oriented concepts
that provides tools such
as diagrams and symbols
to graphically model a
system.

class diagram

A diagram used to
represent data and their
relationships in UML
object notation.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50 Part1 Database Concepts

extended relational
data model (ERDM)
A model that includes
the object-oriented
model’s best features

in an inherently simpler
relational database
structural environment.
See extended entity
relationship model
(EERM).

object/relational
database
management system
(O/R DBMS)

A DBMS based on the
extended relational
model (ERDM). The
ERDM, championed

by many relational
database researchers,
constitutes the relational
model’s response to

the OODM. This model
includes many of the
object-oriented model’s
best features within

an inherently simpler
relational database
structure.

Extensible Markup
Language (XML)

A metalanguage

used to represent

and manipulate data
elements. Unlike other
markup languages, XML
permits the manipulation
of a document’s data
elements. XML facilitates
the exchange of
structured documents
such as orders and
invoices over the Internet.

relational data model (ERDM). The ERDM adds many of the OO model’s features
within the inherently simpler relational database structure. The ERDM gave birth
to a new generation of relational databases that support OO features such as objects
(encapsulated data and methods), extensible data types based on classes, and inher-
itance. That's why a DBMS based on the ERDM is often described as an object/
relational database management system (O/R DBMS).

Today, most relational database products can be classified as object/relational, and
they represent the dominant market share of OLTP and OLAP database applications.
The success of the O/R DBMSs can be attributed to the model’s conceptual simplicity,
data integrity, easy-to-use query language, high transaction performance, high availabil-
ity, security, scalability, and expandability. In contrast, the OO DBMS is popular in niche
markets such as computer-aided drawing/computer-aided manufacturing (CAD/CAM),
geographic information systems (GIS), telecommunications, and multimedia, which
require support for more complex objects.

From the start, the OO and relational data models were developed in response to
different problems. The OO data model was created to address very specific engineer-
ing needs, not the wide-ranging needs of general data management tasks. The relational
model was created with a focus on better data management based on a sound mathemat-
ical foundation. Given its focus on a smaller set of problem areas, it is not surprising that
the OO market has not grown as rapidly as the relational data model market.

The use of complex objects received a boost with the Internet revolution. When orga-
nizations integrated their business models with the Internet, they realized its potential
to access, distribute, and exchange critical business information. This resulted in the
widespread adoption of the Internet as a business communication tool. Within this
environment, Extensible Markup Language (XML) emerged as the de facto standard
for the efficient and effective exchange of structured, semistructured, and unstructured
data. Organizations that used XML data soon realized that they needed to manage large
amounts of unstructured data such as word-processing documents, webpages, emails,
and diagrams. To address this need, XML databases emerged to manage unstructured
data within a native XML format. (See Chapter 15, Database Connectivity and Web Tech-
nologies, for more information about XML.) At the same time, O/R DBMSs added sup-
port for XML-based documents within their relational data structure. Due to its robust
foundation in broadly applicable principles, the relational model is easily extended to
include new classes of capabilities, such as objects and XML.

Although relational and object/relational databases address most current data pro-
cessing needs, a new generation of databases has emerged to address some very specific
challenges found in some Internet-era organizations.

2-5f Emerging Data Models: Big Data and NoSQL

Deriving usable business information from the mountains of web data that organizations
have accumulated over the years has become an imperative need. Web data in the form
of browsing patterns, purchasing histories, customer preferences, behavior patterns, and
social media data from sources such as Facebook, Twitter, and LinkedIn have inundated
organizations with combinations of structured and unstructured data. In addition, mobile
technologies such as smartphones and tablets, plus sensors of all types—GPS, RFID sys-
tems, weather sensors, biomedical devices, space research probes, car and aviation black
boxes—as well as other Internet and cellular-connected devices, have created new ways
to automatically collect massive amounts data in multiple formats (text, pictures, sound,
video, etc.). The amount of data being collected grows exponentially every day. According
to IBM, “Every day we create 2.5 quintillion bytes of data—so much that 90 percent of the

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 51

data in the world today has been created in the last two years alone” According to some
studies, the rapid pace of data growth is the top challenge for organizations,? with system
performance and scalability as the next biggest challenges. Today’s information technology
(IT) managers are constantly balancing the need to manage this rapidly growing data with
shrinking budgets. The need to manage and leverage all these converging trends (rapid
data growth, performance, scalability, and lower costs) has triggered a phenomenon called
“Big Data” Big Data refers to a movement to find new and better ways to manage large
amounts of web and sensor-generated data and derive business insight from it, while
simultaneously providing high performance and scalability at a reasonable cost.

The term Big Data has been used in many different frameworks, from law to statis-
tics to economics to computing. The term seems to have been first used in a computing
framework by John Mashey, a Silicon Graphics scientist in the 1990s.> However, it seems
to be Douglas Laney, a data analyst from the Gartner Group, who first described the
basic characteristics of Big Data databases:* volume, velocity, and variety, or the 3 Vs.

o Volume refers to the amounts of data being stored. With the adoption and growth of
the Internet and social media, companies have multiplied the ways to reach custom-
ers. Over the years, and with the benefit of technological advances, data for millions
of e-transactions were being stored daily on company databases. Furthermore, orga-
nizations are using multiple technologies to interact with end users and those tech-
nologies are generating mountains of data. This ever-growing volume of data quickly
reached petabytes in size, and it’s still growing.

o Velocity refers not only to the speed with which data grows but also to the need to process
this data quickly in order to generate information and insight. With the advent of the
Internet and social media, business response times have shrunk considerably. Organiza-
tions need not only to store large volumes of quickly accumulating data, but also need to
process such data quickly. The velocity of data growth is also due to the increase in the
number of different data streams from which data is being piped to the organization (via
the web, e-commerce, Tweets, Facebook posts, emails, sensors, GPS, and so on).

o Variety refers to the fact that the data being collected comes in multiple different data
formats. A great portion of these data comes in formats not suitable to be handled by
the typical operational databases based on the relational model.

The 3 Vs framework illustrates what companies now know, that the amount of data
being collected in their databases has been growing exponentially in size and complexity.
Traditional relational databases are good at managing structured data but are not well
suited to managing and processing the amounts and types of data being collected in
today’s business environment.
The problem is that the relational approach does not always match the needs of orga- Big Data
nizations with Big Data challenges. A TEvEmEN (® &N

new and better ways to
manage large amounts
of web-generated data

o It is not always possible to fit unstructured, social media and sensor-generated data
into the conventional relational structure of rows and columns.

« Adding millions of rows of multiformat (structured and nonstructured) data on a and derive business

daily basis will inevitably lead to the need for more storage, processing power, and insight from it, while
simultaneously providing

high performance

'IBM, “What is big data? Bringing big data to the enterprise,” http://www-01.ibm.com/software/data/ and scalability at a
bigdata/, accessed April 2013. reasonable cost.

>“Gartner survey shows data growth as the largest data center infrastructure challenge,” www.gartner.com/ 3Vs
it/page.jsp?id=1460213, accessed March 2015. Three basic

?Steve Lohr, “The origins of ‘Big Data’: An etymological detective story,” New York Times, February 1, 2013. characteristics of Big

‘Douglas Laney, “3D data management controlling data volume, velocity and variety, META Group, Data databases: volume,

February 6, 2011. velocity, and variety.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52 Part1 Database Concepts

Hadoop

A Java based, open
source, high speed,
fault-tolerant distributed
storage and com-
putational framework.
Hadoop uses low-cost
hardware to create
clusters of thousands of
computer nodes to store
and process data.

Hadoop Distributed
File System (HDFS)
A highly distributed,
fault-tolerant file storage
system designed to
manage large amounts
of data at high speeds.

name node

One of three types

of nodes used in the
Hadoop Distributed

File System (HDFS). The
name node stores all the
metadata about the file
system. See also client
node and data node.

data node

One of three types

of nodes used in the
Hadoop Distributed File
System (HDFS). The data
node stores fixed-size
data blocks (that could
be replicated to other
da-ta nodes). See also
client node and name
node.

sophisticated data analysis tools that may not be available in the relational environ-
ment. Generally speaking, the type of high-volume implementations required in
the RDBMS environment for the Big Data problem comes with a hefty price tag for
expanding hardware, storage, and software licenses.

 Data analysis based on OLAP tools has proven to be very successful in relational
environments with highly structured data. However, mining for usable data in the
vast amounts of unstructured data collected from web sources requires a different
approach.

There is no “one-size-fits-all” cure to data management needs (although many estab-
lished database vendors will probably try to sell you on the idea). For some organizations,
creating a highly scalable, fault-tolerant infrastructure for Big Data analysis could prove
to be a matter of business survival. The business world has many examples of companies
that leverage technology to gain a competitive advantage, and others that miss it. Just ask
yourself how the business landscape would be different if:

« Blackberry had responded quickly to the emerging Apple smartphone technology.
« MySpace had responded to FacebooK’s challenge in time.

« Blockbuster had reacted to the Netflix business model sooner.

« Barnes & Noble had developed a viable Internet strategy before Amazon.

Will broadcast television networks be able to adapt to streaming services such as
Hulu, AppleTV, and Roku? Will traditional news outlets be able to adapt to the changing
news consumption patterns of the millennial generation?

Big Data analytics are being used to create new types of services by all types of com-
panies. For example: TXU Energy,5 a Texas electricity provider, and OPower,° a service
company that provides managed solutions for utility providers, are using Big Data and
emerging technologies to reduce consumption and provide energy savings to their cus-
tomers. Their data comes from multiple sources (intelligent sensors, weather feeds,
demographics data banks, public sector data, and geographical data), and it is being used
to create value for both companies and customers.

In order to create value from their previously unused Big Data stores, companies are
using new Big Data technologies. These emerging technologies allow organizations to
process massive data stores of multiple formats in cost-effective ways. Some of the most
frequently used Big Data technologies are Hadoop, MapReduce, and NoSQL databases.

« Hadoop is a Java based, open source, high speed, fault-tolerant distributed storage
and computational framework. Hadoop uses low-cost hardware to create clusters
of thousands of computer nodes to store and process data. Hadoop originated from
Google’s work on distributed file systems and parallel processing and is currently sup-
ported by the Apache Software Foundation.” Hadoop has several modules, but the
two main components are Hadoop Distributed File System (HDFS) and MapReduce.

« Hadoop Distributed File System (HDFS) is a highly distributed, fault-tolerant file
storage system designed to manage large amounts of data at high speeds. In order to
achieve high throughput, HDFS uses the write-once, read many model. This means
that once the data is written, it cannot be modified. HDFS uses three types of nodes:
a name node that stores all the metadata about the file system, a data node that

*Harish Kotadia, “4 excellent big data case studies,” http://hkotadia.com/archives/5021, July 22, 2012.

®Katie Fehrenbacher, “How big data can curb the world’s energy consumption,” http://gigaom.
com/2012/03/11/10-ways-big-data-is-changing-everything/3/

’For more information about Hadoop visit hadoop.apache.org.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 53

stores fixed-size data blocks (that could be replicated to other data nodes), and a
client node that acts as the interface between the user application and the HDFS.

« MapReduce is an open source application programming interface (API) that pro-
vides fast data analytics services. MapReduce distributes the processing of the data
among thousands of nodes in parallel. MapReduce works with structured and non-
structured data. The MapReduce framework provides two main functions, Map and
Reduce. In general terms, the Map function takes a job and divides it into smaller
units of work; the Reduce function collects all the output results generated from the
nodes and integrates them into a single result set.

« NoSQL isalarge-scale distributed database system that stores structured and unstruc-
tured data in efficient ways. NoSQL databases are discussed in more detail later in this
section.

Hadoop technologies provide a framework for Big Data analytics in which data
(structured or unstructured) is distributed, replicated, and processed in parallel using
a network of low-cost commodity hardware. Hadoop introduced new ways to store and
manage data and Hadoop-related technologies gave rise to a new generation of database
systems. NoSQL databases provide distributed, fault-tolerant databases for processing
nonstructured data.

With the potential of big gains derived from Big Data analytics, it is not surprising that
some organizations are turning to emerging Big Data technologies, such as NoSQL
databases, to mine the wealth of information hidden in mountains of web data and
gain a competitive advantage.

Note

Does this mean that relational databases don’t have a place in organizations with Big Data
challenges? No, relational databases remain the preferred and dominant databases to sup-
port most day-to-day transactions and structured data analytics needs. Each DBMS tech-
nology has its areas of application, and the best approach is to use the best tool for the job.
In perspective, object/relational databases serve 98 percent of operational market needs.
For Big Data needs, Hadoop, MapReduce, and NoSQL databases are the options.

Chapter 14, Big Data Analytics and NoSQL, discusses these options in greater detail.

NoSQL Databases Every time you search for a product on Amazon, send messages
to friends in Facebook, watch a video on YouTube, or search for directions in Google
Maps, you are using a NoSQL database. As with any new technology, the term NoSQL
can be loosely applied to many different types of technologies. However, this chapter uses
NoSQL to refer to a new generation of databases that address the specific challenges of
the Big Data era and have the following general characteristics:

« They are not based on the relational model and SQL, hence the name NoSQL.
« They support distributed database architectures.

« They provide high scalability, high availability, and fault tolerance.

« They support very large amounts of sparse data.

o They are geared toward performance rather than transaction consistency.

Let’s examine these characteristics in more detail.
NoSQL databases are not based on the relational model. In fact, there is no standard
NoSQL data model. To the contrary, many different data models are grouped under the

client node

One of three types

of nodes used in the
Hadoop Distributed

File System (HDFS). The
client node acts as the
interface between the
user application and the
HDFS. See also name
node and data node.

MapReduce

An open-source
application
programming interface
(API) that provides fast
data analytics services;
one of the main Big Data
technologies that allows
organizations to process
massive data stores.

NoSQL

A new generation of
database management
systems that is not
based on the traditional
relational database
model.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54 Part1

Database Concepts

NoSQL umbrella, from document databases to graph stores, column stores, and key-value
stores. It is still too early to know which, if any, of these data models will survive and grow
to become a dominant force in the database arena. However, the early success of prod-
ucts such as Amazon’s SimpleDB, Google’s BigTable, and Apache’s Cassandra points to the
key-value stores and column stores as the early leaders. The word stores indicates that these
data models permanently store data in secondary storage, just like any other database. This
added emphasis comes from the fact that these data models originated from programming
languages (such as LISP), in which in-memory arrays of values are used to hold data.

The key-value data model is based on a structure composed of two data elements: a
key and a value, in which every key has a corresponding value or set of values. The key-
value data model is also referred to as the attribute-value or associative data model. To
better understand the key-value model, look at the simple example in Figure 2.5.

FIGURE 2.5 A SIMPLE KEY-VALUE REPRESENTATION

Trucks-R-Us
Data stored using
Data stored using traditional relational model key-value model
(oo | cerrr | cram | csam | —oon | e | Con | wev | vaue
2732 a0 95 1/24/1962 = < 2732 CERT1 a0
2946 4111870 2732 CERT3 95
3650 a6 11/27/1963 R 2732 DOB 1£24/1962
2732 LICTYPE =
2846 CERT2 a2
¢ In the relational model: 2846 DOB 41141970
e Each row represents one entity instance. f 30 CERTI ES
e Each column represents one attribute of the entity. 3O DOB 1127583
e The values in a column are of the same data type. et L B

e In the key-value model:
e Each row represents one attribute/value of one entity

instance.

Driver 2732

e The “key” column could represent any entity’s attribute.
e The values in the “value” column could be of any data
type and therefore it is generally assigned a long string

data type.

key-value

A data model based on
a structure composed
of two data elements:
a key and a value, in
which every key has a
corresponding value or
set of values. The key-
value data model is also
called the associative
or attribute-value data
model.

Figure 2.5 shows the example of a small truck-driving company called Trucks-R-Us.
Each of the three drivers has one or more certifications and other general information.
Using this example, we can draw the following important points:

« In the relational model, every row represents a single entity occurrence and every
column represents an attribute of the entity occurrence. Each column has a defined
data type.

« In the key-value data model, each row represents one attribute of one entity instance.
The “key” column points to an attribute, and the “value” column contains the actual
value for the attribute.

+ The data type of the “value” column is generally a long string to accommodate the
variety of actual data types of the values placed in the column.

« To add a new entity attribute in the relational model, you need to modify the table
definition. To add a new attribute in the key-value store, you add a row to the key-value
store, which is why it is said to be “schema-less”

« NoSQL databases do not store or enforce relationships among entities. The program-
mer is required to manage the relationships in the program code. Furthermore, all
data and integrity validations must be done in the program code (although some
implementations have been expanded to support metadata).

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 55

« NoSQL databases use their own native application programming interface (API)
with simple data access commands, such as put, read, and delete. Because there is
no declarative SQL-like syntax to retrieve data, the program code must take care of
retrieving related data in the correct way.

« Indexing and searches can be difficult. Because the “value” column in the key-value
data model could contain many different data types, it is often difficult to create
indexes on the data. At the same time, searches can become very complex.

As a matter of fact, you could use the key-value structure as a general data modeling
technique when attributes are numerous but actual data values are scarce. The key-value
data model is not exclusive to NoSQL databases; actually, key-value data structures could
reside inside a relational database. However, because of the problems with maintaining
relationships and integrity within the data, and the increased complexity of even simple
queries, key-value structures would be a poor design for most structured business data.

Several NoSQL database implementations, such as Google’s BigTable and Apache’s
Cassandra, have extended the key-value data model to group multiple key-value sets into
column families or column stores. In addition, such implementations support features
such as versioning using a date/time stamp. For example, BigTable stores data in the
syntax of [row, column, time, value], where row, column, and value are string data types,
and time is a date/time data type. The key used to access the data is composed of (row,
column, time), where time can be left blank to indicate the most recent stored value.

NoSQL supports distributed database architecture. One of the big advantages of NoSQL
databases is that they generally use a distributed architecture. In fact, several of them
(Cassandra and BigTable, for example) are designed to use low-cost commodity serv-
ers to form a complex network of distributed database nodes. Remember that several
NoSQL databases originated in the research labs of some of the most successful web
companies, and most started on very small budgets!

NoSQL supports very large amounts of sparse data. NoSQL databases can handle very
high volumes of data. In particular, they are suited for sparse data—that is, for cases in
which the number of attributes is very large but the number of actual data instances is
low. Using the preceding example, drivers can take any certification exam, but they are
not required to take all. In this case, if there are three drivers and three possible certifi-
cates for each driver, there will be nine possible data points. In practice, however, there
are only four data instances. Now extrapolate this example for the case of a clinic with
15,000 patients and more than 500 possible tests, remembering that each patient can take
a few tests but is not required to take all.

NoSQL provides high scalability, high availability, and fault tolerance. True to its web
origins, NoSQL databases are designed to support web operations, such as the ability to
add capacity in the form of nodes to the distributed database when the demand is high,
and to do it transparently and without downtime. Fault tolerance means that if one of the
nodes in the distributed database fails, it will keep operating as normal. sparse data

Most NoSQL databases are geared toward performance rather than transaction consis- A case in which the
tency. One of the biggest problems of very large distributed databases is enforcing data TR G

. _ . . . attributes is very large
consistency. Distributed databases automatically make copies of data elements at multi- but the number of actual

ple nodes to ensure high availability and fault tolerance. If the node with the requested Ny Tr—
data goes down, the request can be served from any other node with a copy of the data. eventual consistency
However, what happens if the network goes down during a data update? In a relational A model for database
database, transaction updates are guaranteed to be consistent or the transaction is rolled consistency in which

back. NoSQL databases sacrifice consistency to attain high levels of performance. (See updates to the database
will propagate through

Chapter 14, Big Data Analytics and NoSQL, to learn more about this topic.) Some NoSQL O |
databases provide a feature called eventual consistency, which means that updates to data copies will be
the database will propagate through the system and eventually all data copies will be consistent eventually.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56 Part1 Database Concepts

consistent. With eventual consistency, data is not guaranteed to be consistent across all
copies of the data immediately after an update.

NoSQL is one of the hottest items in database technologies today. But it is only one of
many emerging trends in data management. Whatever database technology you use, you
need to be able to select the best tool for the job by understanding the pros and cons of
each technology. The following section briefly summarizes the evolution of data models
and provides some advantages and disadvantages of each.

2-5g Data Models: A Summary

The evolution of DBMSs has always been driven by the search for new ways of modeling
and managing increasingly complex real-world data. A summary of the most commonly
recognized data models is shown in Figure 2.6.

FIGURE 2.6 THE EVOLUTION OF DATA MODELS

Semantics in

Data Model Comments

least

Hierarchical

Network

—

Relational

Entity Relationship
1983
Internet is
born

most
NoSQL

In the evolution of data models, some common characteristics have made them
widely accepted:

Semantic

Extended Relational

Object-Oriented
(O/R DBMS)

« A data model must show some degree of conceptual simplicity without compro-
mising the semantic completeness of the database. It does not make sense to have
a data model that is more difficult to conceptualize than the real world. At the same
time, the model should show clarity and relevance; that is, the data model should
be unambiguous and applicable to the problem domain. A data model must repre-
sent the real world as closely as possible. This goal is more easily realized by adding

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Data Models 57

more semantics to the model’s data representation. (Semantics concern dynamic
data behavior, while data representation constitutes the static aspect of the real-
world scenario.) In other words, the model should be accurate and complete—all
the needed data is included and properly described.

o Representation of the real-world transformations (behavior) must be in compliance
with the consistency and integrity characteristics required by the intended use of the
data model.

Each new data model addresses the shortcomings of previous models. The network
model replaced the hierarchical model because the former made it much easier to repre-
sent complex (many-to-many) relationships. In turn, the relational model offers several
advantages over the hierarchical and network models through its simpler data repre-
sentation, superior data independence, and easy-to-use query language; these features
made it the preferred data model for business applications. The OO data model intro-
duced support for complex data within a rich semantic framework. The ERDM added
many OO features to the relational model and allowed it to maintain strong market share
within the business environment. In recent years, the Big Data phenomenon has stim-
ulated the development of alternative ways to model, store, and manage data that rep-
resents a break with traditional data management.

It is important to note that not all data models are created equal; some data models
are better suited than others for some tasks. For example, conceptual models are better
suited for high-level data modeling, while implementation models are better for manag-
ing stored data for implementation purposes. The entity relationship model is an exam-
ple of a conceptual model, while the hierarchical and network models are examples of
implementation models. At the same time, some models, such as the relational model
and the OODM, could be used as both conceptual and implementation models. Table 2.2
summarizes the advantages and disadvantages of the various database models.

Note

All databases assume the use of a common data pool within the database. Therefore, all
database models promote data sharing, thus reducing the potential problem of islands of
information.

Thus far, you have been introduced to the basic constructs of the more prominent data
models. Each model uses such constructs to capture the meaning of the real-world data
environment. Table 2.3 shows the basic terminology used by the various data models.

2-6 Degrees of Data Abstraction

If you ask 10 database designers what a data model is, you will end up with 10 different
answers—depending on the degree of data abstraction. To illustrate the meaning of data
abstraction, consider the example of automotive design. A car designer begins by draw-
ing the concept of the car to be produced. Next, engineers design the details that help
transfer the basic concept into a structure that can be produced. Finally, the engineering
drawings are translated into production specifications to be used on the factory floor. As
you can see, the process of producing the car begins at a high level of abstraction and
proceeds to an ever-increasing level of detail. The factory floor process cannot proceed
unless the engineering details are properly specified, and the engineering details cannot

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Database Concepts

58 Part1

‘[9poW Jua)sISU0d Aj[enusAs ue sapinoid 31 ‘ADUS]SISUOD B1ep JO SWIRY U| "Aouaidyys abeiols sanoidwi [Spow anjeA-Ady “f
‘Jioddns Ajibajul uoiydesuel} ou 1 aIdY] ‘€ ‘eyeq big spoddns)| ‘¢
'9p0d uonedidde Aq Ajuo—ii1oddns diysuonejpi ou siaivyy ‘g ‘21empiey AHPOWWOD 3S0d-MO| S9SN 1| T
‘paiinbai si buiwwelboid xajdwo) ‘| | ‘papiroid aie adueIS|0) 3Ne) pue ‘AYjiqe|ieae ‘Ayjigejeds ybiH | SOA SOA TOSON
'SUOI}DBSURI} SMO|S PEIYISA0 WS1SAS YbIH “f
9AIND Buluies| dasys e siaivyl ‘g€
‘wi9)sAs [euonebineu xajdwod eIy T *Ayub33ul e1RP S10wWoid SdURIIBYU| €
‘piepuels paydadoe A|spim e bueuiwi|d sny3 ‘syuswdueyus "JUS)U0D DIIUBWISS SIPN|DUI uolleIuSsaldal [ensip ' pajusLo
umo J1ay3 Ajddns 03 siopusA pasned spiepuess Jo JuswdojaAsSp MolS | ‘PIPPE SIJUSIUOD dIJURWSS | SOA S9A -123(q0
(‘suoisian |ediydelb
juanbasqgns ul passalppe usaq sey uolepwl| siy]) ‘sAejdsip papmolid pioAe 0}
S91113UD WOJJ PIAOWI 3B S3INCLIIIE USYM SINDD0 JUSIUOD UOIIBWIOJUI JO SSOT ‘|9pOoW |euol}e|a] JUBUIWOP 3Y) YHM pajesbalul sty €
‘abenbue| uope|ndjuew eyep ou si iyl ‘€ ‘|00
‘uoneuasaidal diysuorie|al payiwl| S 213y ‘7 | UOIEDIUNWIWOD SAI}DRYS Ue }1 S9¥eW uoljejuasaidal [ensip 7 diysuone|as
‘uo1eIuSSaIdal JUIRIISUOD PAUWI| SI IBYL L ‘AKyd1jdwis [enydaduod jeuondadxa spiaIA bulepow [ensipn “| SIA SOA Amug
“Aydyduwis
juswabeuew pue uonejusws|dwi saroidwi pue sjielap
19A3]-[ed1sAyd wiouy Jasn pus ay) $91e[0s! SINGAY [NHIMOd 1
“10S uo paseq st Ayjiqeded Aionb doy py ‘€
‘suonedijdde umo 419y dojanap Ajises ued syuswpiedap ‘95N pue ‘quswabeuew ‘uorrejuswa|dwi
pue sjenplAipul se swa|qo.d uoijew.ojul Jo spue|si ajowoid Aew 3| ¢ ‘ubisap aseqeiep Jaises bunowoid Agasayy ‘Aydidwis
'Sw91sAs 9|y Ul punoy Jenidacuod sanoidwi Ajjeruesqns malA Jejnge] g
saljewoue ejep awes ay3} adnpoid Aew 31 ‘paydaydun Ji pue ‘Ajood waisAs ‘sweiboud uonedijdde Jo ssadde ejep 1d3ye
poob e asn 03 5|00} ay} ojdoad pauienun Aj@Aneas sanlb Aydidwis jenydasuo) 10U Op 21N3ONJ3S 5,9|qe) e ul sabuey) ‘sajqe) Jusapuadapul
‘PEIYIDA0 D1BMIOS WIAISAS pUR dieMpiey [elauRISqNS sauinbal SNgay @yl L J0 9sn oy Aq pajowoid si 9duspuadapul [eindNiS L SOA SO\ |euoneay
'SINGQ u! (TWQ) 3benbuej uonendiuew
elep pue (1gq) ebenbue| uoniuysp eyep sspnpuly ‘9
"SpJEPUER]S 0 9DURWIOJUOD S| AIBY] °S
*A111631u1 eYEp SS10WOId diysuolle[as JSqWSW/ISUMO Bleq ‘{7
‘S|opow Wa3sAs
S|Y pue [edIydIeIalY Ul UBY) 3|GIX3|) 2I0W S SS920€ Bleq €
‘sweiboid uonedidde |je ur ssbueyd alinbai sabueyd |eanonis € uasediyinw
‘Juswsabeuew pue ‘quswdojansp pue N:|\ Se yans ‘sadA} diysuoneas asow sajpueyy ¢
uonedijdde ‘uonejuswa|dwi xajdwod spisIk walsAs [euonebineN ‘g ‘|spow [eaiydJelsly
‘wa1sAs [euonebineu e |13s—Adusdys sywi| Apxs|dwod wisAs | 9U3 Jo 1ey) 03 [enba 3ses) e si Ayd1dwis [enydaduo) | OoN SOA 3IoMIaN
'spJepueis Jodde|esiaidyl ‘9
*SINGQ 9Y3 ul obenbue| uonendiuew elep 1o UOIUYSP BIep OU SI 13y 'S
‘(sdiysuoneas N: 40 Juasediyjnw ou) suolieyiwi| uonejusws|dwi aie a1dy|
‘sweiboid uonedijdde e ul ssbueyd ainbai ainyonays ul sebuey) ‘¢ 'sdiysuoie|as L YHM Juspwa sty °g
‘yied |ed1ydaesaly Jo abpsjmouy saainbal fasn pue *Ay1bayul eyep sejowoid diysuonelal pliyd/aualed i
“Juswabeuew ‘quawdojansp uonedijdde xajdwod spiaIk waisAs [euonebineN ‘7 *SINga Aq padiojua pue papiaold st A}ndas aseqeieq ‘¢
'solsl91oeIRYD *Apd1jdwis jenidacuod sajowoud diysuoneas pjiys/ausied g
ab6e.0)s ejep |eaisAyd jo sbpajmouy| sasinbas uoneusws|dwi xsjdwod | ‘Buiieys ejep sajowoidy| °| ON S9A | [edlydielaly

SADVINVAQVSIA

S3DVINVAQY

IDON3AN3dIANI
IVdNLONYLS

IDON3AN3d3ANI
viva

T13AOW
viva

ST3AOW 3SVAVYLVA SNOIYVA 40 SIDVLINVAAYSIA ANV SIOVLNVAQY
¢c314avl

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Data Models 59

TABLE 2.3

DATA MODEL BASICTERMINOLOGY COMPARISON

REAL WORLD | EXAMPLE FILE HIERARCHICAL | NETWORK RELATIONAL | ER MODEL OO MODEL
PROCESSING | MODEL MODEL MODEL

A group of Vendor file File Segment type Record type Table Entity set Class

vendors cabinet

Assingle Global Record Segment Current record | Row (tuple) Entity Object

vendor supplies occurrence occurrence instance

The contact | Johnny Field Segment field Record field Table Entity Object

name Ventura attribute attribute attribute

The vendor G12987 Index Sequence field | Record key Key Entity Object

identifier identifier identifier

Note: For additional information about the terms used in this table, consult the corresponding chapters and online appendixes that

accompany this book. For example, if you want to know more about the OO model, refer to Appendix G, Object-Oriented Databases.

exist without the basic conceptual framework created by the designer. Designing a
usable database follows the same basic process. That is, a database designer starts with an
abstract view of the overall data environment and adds details as the design comes closer

to implementation. Using levels of abstraction can also be very helpful in integrating American National
multiple (and sometimes conflicting) views of data at different levels of an organization. Standards Institute
In the early 1970s, the American National Standards Institute (ANSI) Standards (ANSI)

Planning and Requirements Committee (SPARC) defined a framework for data mod- LIS eVt

. f . Th . . accepted the DBTG
eling based on degrees of data abstraction. The resulting ANSI/SPARC architecture recommendations and
defines three levels of data abstraction: external, conceptual, and internal. You can use augmented database
this framework to better understand database models, as shown in Figure 2.7. In the standards in 1975

figure, the ANSI/SPARC framework has been expanded with the addition of a physical thoughits SPARG
model to explicitly address physical-level implementation details of the internal model. commitee.

FIGURE 2.7 DATA ABSTRACTION LEVELS

End-User View End-User View

Degree of
Abstraction Characteristics

Designer’s
R Hardware-independent

View
.] Software-independent
Obje iented
Logical independence
) Hardware-independent
e ——— Software-dependent
Internal DBMS
Model View

Hardware-dependent
Hie Software-dependent

Physical independence

| Physical
Model

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60 Part1 Database Concepts

external model

The application
programmer’s view of
the data environment.
Given its business focus,
an external model works
with a data subset of the
global database schema.

external schema
The specific
representation of an
external view; the end
user’s view of the data
environment.

2-6a The External Model

The external model is the end users’ view of the data environment. The term end users
refers to people who use the application programs to manipulate the data and generate
information. End users usually operate in an environment in which an application has a
specific business unit focus. Companies are generally divided into several business units,
such as sales, finance, and marketing. Each business unit is subject to specific constraints
and requirements, and each one uses a subset of the overall data in the organization.
Therefore, end users within those business units view their data subsets as separate from
or external to other units within the organization.

Because data is being modeled, ER diagrams will be used to represent the external
views. A specific representation of an external view is known as an external schema.
To illustrate the external model’s view, examine the data environment of Tiny College.

Figure 2.8 presents the external schemas for two Tiny College business units: student
registration and class scheduling. Each external schema includes the appropriate entities,
relationships, processes, and constraints imposed by the business unit. Also note that
although the application views are isolated from each other, each view shares a common
entity with the other view. For example, the registration and scheduling external schemas
share the entities CLASS and COURSE.

FIGURE 2.8 EXTERNAL MODELS FORTINY COLLEGE

Student Registration

A student may take up to six | STUBENT
classes per registration.

ﬁal'l Bf&t&; 1

Class Scheduling

A room may be used to RODM
teach many classes.

=18
m

in is usgd for

istﬂ% by
s

{18

Each class is taught in orly one room.
Each class is taught by cne profassor.

A class is limited to
35 students.,

A professor may teach
up to three classes.

Note the entity relationships represented in Figure 2.8:

« A PROFESSOR may teach many CLASSes, and each CLASS is taught by only one
PROFESSOR; there is a 1:M relationship between PROFESSOR and CLASS.

« A CLASS may ENROLL many students, and each STUDENT may ENROLL in many
CLASSes, thus creating an M:N relationship between STUDENT and CLASS. (You
will learn about the precise nature of the ENROLL entity in Chapter 4.)

« Each COURSE may generate many CLASSes, but each CLASS references a single
COURSE. For example, there may be several classes (sections) of a database course
that have a course code of CIS-420. One of those classes might be offered on MWF

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 61

from 8:00 a.m. to 8:50 a.m., another might be offered on MWF from 1:00 p.m. to 1:50
p.m., while a third might be offered on Thursdays from 6:00 p.m. to 8:40 p.m. Yet, all
three classes have the course code CIS-420.

« Finally, a CLASS requires one ROOM, but a ROOM may be scheduled for many
CLASSes. That is, each classroom may be used for several classes: one at 9:00 a.m.,
one at 11:00 a.m., and one at 1:00 p.m., for example. In other words, there is a 1:M
relationship between ROOM and CLASS.

The use of external views that represent subsets of the database has some important
advantages:

o Itis easy to identify specific data required to support each business unit’s operations.

« It makes the designer’s job easy by providing feedback about the model’s adequacy.
Specifically, the model can be checked to ensure that it supports all processes as defined
by their external models, as well as all operational requirements and constraints.

o It helps to ensure security constraints in the database design. Damaging an entire
database is more difficult when each business unit works with only a subset of data.

« It makes application program development much simpler.

2-6b The Conceptual Model

The conceptual model represents a global view of the entire database by the entire orga-
nization. That is, the conceptual model integrates all external views (entities, relationships,
constraints, and processes) into a single global view of the data in the enterprise, as shown
in Figure 2.9. Also known as a conceptual schema, it is the basis for the identification and
high-level description of the main data objects (avoiding any database model-specific details).

The most widely used conceptual model is the ER model. Remember that the ER
model is illustrated with the help of the ERD, which is effectively the basic database blue-
print. The ERD is used to graphically represent the conceptual schema.

The conceptual model yields some important advantages. First, it provides a bird’s-
eye (macro level) view of the data environment that is relatively easy to understand. For
example, you can get a summary of Tiny College’s data environment by examining the
conceptual model in Figure 2.9.

FIGURE 2.9 CONCEPTUAL MODEL FORTINY COLLEGE

'STUDENT ENROLL
yenrolls in, |
LL] L B

conceptual model
is taken by The output of the
conceptual design

o CLASS OO process. The conceptual
teaches : ii used Hi model provides a
global view of an entire
database and describes
1 the main data objects,
genefates avoiding details.

conceptual schema
COURSE A representation of
the conceptual model,
usually expressed
graphically. See also
conceptual model.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62 Part1

software
independence

A property of any model or
application that does not
depend on the software
used to implement it.

hardware
independence

A condition in which
amodel does not
depend on the hardware
used in the model's
implementation. Therefore,
changes in the hardware
will have no effect on the
database design at the
conceptual level.

logical design

A stage in the design
phase that matches

the conceptual design
to the requirements of
the selected DBMS and
is therefore software-
dependent. Logical
design is used to translate
the conceptual design
into the internal model
for a selected database
management system,
such as DB2, SQL Server,
Oracle, IMS, Informix,
Access, or Ingress.

internal model

In database modeling, a
level of data abstraction
that adapts the conceptual
model to a specific DBMS
model for implementation.
The internal model is

the representation of

a database as“seen”

by the DBMS. In other
words, the internal model
requires a designer to
match the conceptual
model’s characteristics and
constraints to those of the
selected implementation
model.

internal schema

A representation of an
internal model using the
database constructs sup-
ported by the chosen
database.

Database Concepts

Second, the conceptual model is independent of both software and hardware. Soft-
ware independence means that the model does not depend on the DBMS software
used to implement the model. Hardware independence means that the model does not
depend on the hardware used in the implementation of the model. Therefore, changes
in either the hardware or the DBMS software will have no effect on the database design
at the conceptual level. Generally, the term logical design refers to the task of creating a
conceptual data model that could be implemented in any DBMS.

2-6¢ The Internal Model

Once a specific DBMS has been selected, the internal model maps the conceptual model
to the DBMS. The internal model is the representation of the database as “seen” by the
DBMS. In other words, the internal model requires the designer to match the conceptual
model’s characteristics and constraints to those of the selected implementation model.
An internal schema depicts a specific representation of an internal model, using the
database constructs supported by the chosen database.

Because this book focuses on the relational model, a relational database was chosen to
implement the internal model. Therefore, the internal schema should map the concep-
tual model to the relational model constructs. In particular, the entities in the concep-
tual model are mapped to tables in the relational model. Likewise, because a relational
database has been selected, the internal schema is expressed using SQL, the standard
language for relational databases. In the case of the conceptual model for Tiny College
depicted in Figure 2.9, the internal model was implemented by creating the tables PRO-
FESSOR, COURSE, CLASS, STUDENT, ENROLL, and ROOM. A simplified version of
the internal model for Tiny College is shown in Figure 2.10.

The development of a detailed internal model is especially important to database
designers who work with hierarchical or network models because those models require

FIGURE 2.10 INTERNAL MODEL FORTINY COLLEGE

CONCEPTUAL MODEL INTERNAL MODEL

FROFESSOR s Create Table PROFESSOR(
PROF_ID NUMBER PRIMARY KEY,
PROF_LNAME CHAR{15),
PROF_INITIAL CHAR(1),

PROF_FNAME CHAR(15),
oo e |

Create Table CLASS(

CLASS_ID NUMBER PRIMARY KEY,

d for CRS_ID CHAR(8) REFERENCES COURSE.
PROF_ID NUMBER REFERENCES PROFESSOR,
ROOM_ID CHAR(8) REFERENCES ROOM,

.........)

RO | mp Create Table ROOM(

ROOM_ID CHAR(8) PRIMARY KEY,
ROOM_TYPE CHAR(3),

_________);

sl Create Table COURSE(

CRS_ID CHAR(8) PRIMARY KEY,
CRS_NAME CHAR(25),
CRS_CREDITS NUMBER,

szl

LLI

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

precise specification of data storage location and data access paths. In contrast, the rela-
tional model requires less detail in its internal model because most RDBMSs handle data
access path definition transparently; that is, the designer need not be aware of the data
access path details. Nevertheless, even relational database software usually requires spec-
ifications of data storage locations, especially in a mainframe environment. For example,
DB2 requires that you specify the data storage group, the location of the database within
the storage group, and the location of the tables within the database.

Because the internal model depends on specific database software, it is said to be
software dependent. Therefore, a change in the DBMS software requires that the inter-
nal model be changed to fit the characteristics and requirements of the implementation
database model. When you can change the internal model without affecting the concep-
tual model, you have logical independence. However, the internal model is still hard-
ware independent because it is unaffected by the type of computer on which the software
is installed. Therefore, a change in storage devices or even a change in operating systems
will not affect the internal model.

2-6d The Physical Model

The physical model operates at the lowest level of abstraction, describing the way data is
saved on storage media such as magnetic, solid state, or optical media. The physical model
requires the definition of both the physical storage devices and the (physical) access meth-
ods required to reach the data within those storage devices, making it both software and
hardware dependent. The storage structures used are dependent on the software (the DBMS
and the operating system) and on the type of storage devices the computer can handle. The
precision required in the physical model’s definition demands that database designers have
a detailed knowledge of the hardware and software used to implement the database design.

Early data models forced the database designer to take the details of the physical
model’s data storage requirements into account. However, the now dominant relational
model is aimed largely at the logical level rather than the physical level; therefore, it does
not require the physical-level details common to its predecessors.

Although the relational model does not require the designer to be concerned about the
data’s physical storage characteristics, the implementation of a relational model may require
physical-level fine-tuning for increased performance. Fine-tuning is especially important
when very large databases are installed in a mainframe environment, yet even such perfor-
mance fine-tuning at the physical level does not require knowledge of physical data storage
characteristics.

As noted earlier, the physical model is dependent on the DBMS, methods of accessing
files, and types of hardware storage devices supported by the operating system. When
you can change the physical model without affecting the internal model, you have physi-
calindependence. Therefore, a change in storage devices or methods and even a change
in operating system will not affect the internal model.

The levels of data abstraction are summarized in Table 2.4.

TABLE 2.4

LEVELS OF DATA ABSTRACTION

MODEL DEGREE OF ABSTRACTION | FOCUS

Chapter2 Data Models 63

logical
independence

A condition in which
the internal model can
be changed without af-
fecting the conceptual
model. (The internal
model is hardware-
independent because
it is unaffected by the
computer on which the
software is installed.
Therefore, a change

in storage devices or
operating systems will
not affect the internal
model.)

physical model

A model in which
physical characteristics
such as location, path,
and format are described
for the data. The
physical model is both
hardware- and software-
dependent. See also
physical design.
physical
independence

A condition in which
the physical model can
be changed without
affecting the internal
model.

INDEPENDENT OF

External High End-user views Hardware and software
Conceptual Global view of data (database model independent) | Hardware and software
Internal Specific database model Hardware

Physical Low Storage and access methods Neither hardware nor software

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64 Part1 Database Concepts

« A data model is an abstraction of a complex real-world data environment. Database
designers use data models to communicate with programmers and end users. The
basic data-modeling components are entities, attributes, relationships, and con-

straints. Business rules are used to identify and define the basic modeling components
within a specific real-world environment.

o The hierarchical and network data models were early models that are no longer used,
but some of the concepts are found in current data models.

o The relational model is the current database implementation standard. In the rela-
tional model, the end user perceives the data as being stored in tables. Tables are
related to each other by means of common values in common attributes. The entity
relationship (ER) model is a popular graphical tool for data modeling that comple-
ments the relational model. The ER model allows database designers to visually pres-
ent different views of the data—as seen by database designers, programmers, and end
users—and to integrate the data into a common framework.

« The object-oriented data model (OODM) uses objects as the basic modeling struc-
ture. Like the relational model’s entity, an object is described by its factual content.
Unlike an entity, however, the object also includes information about relationships
between the facts, as well as relationships with other objects, thus giving its data more
meaning.

« The relational model has adopted many object-oriented (OO) extensions to become
the extended relational data model (ERDM). Object/relational database management
systems (O/R DBMS) were developed to implement the ERDM. At this point, the
OODM is largely used in specialized engineering and scientific applications, while the
ERDM is primarily geared to business applications.

« Emerging Big Data technologies such as Hadoop, MapReduce, and NoSQL provide
distributed, fault-tolerant, and cost-efficient support for Big Data analytics. NoSQL
databases are a new generation of databases that do not use the relational model and
are geared to support the very specific needs of Big Data organizations. NoSQL data-
bases offer distributed data stores that provide high scalability, availability, and fault
tolerance by sacrificing data consistency and shifting the burden of maintaining rela-
tionships and data integrity to the program code.

« Data-modeling requirements are a function of different data views (global versus
local) and the level of data abstraction. The American National Standards Institute
Standards Planning and Requirements Committee (ANSI/SPARC) describes three
levels of data abstraction: external, conceptual, and internal. The fourth and lowest
level of data abstraction, called the physical level, is concerned exclusively with phys-
ical storage methods.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter2 Data Models 65

3Vs

American National

Standards Institute (ANSI)

attribute

Big Data

business rule

Chen notation

class

class diagram

class diagram notation
class hierarchy
client node
conceptual model
conceptual schema
connectivity
constraint

Crow’s Foot notation

data definition language
(DDL)

data manipulation language

(DML)
data model
data modeling
data node
entity
entity instance
entity occurrence

entity relationship (ER)
model (ERM)

entity relationship diagram

(ERD)
entity set
eventual consistency

extended relational data
model (ERDM)

Extensible Markup
Language (XML)

external model
external schema
Hadoop

Hadoop Distributed File
System (HDFS)

hardware independence
hierarchical model
inheritance

internal model

internal schema
key-value

logical design

logical independence

MapReduce

many-to-many (M:N or *..*)

relationship
method
name node
network model
NoSQL

object

Review Questions

object/relational
database management
system (O/R DBMS)

object-oriented data
model (OODM)

object-oriented database
management system
(OODBMS)

one-to-many (1:M or 1..%)
relationship

one-to-one (1:1 or 1..1)
relationship

physical independence
physical model
relation

relational database
management system
(RDBMS)

relational diagram
relational model
relationship

schema

segment

semantic data model
software independence
sparse data
subschema

table

tuple

Unified Modeling Language

(UML)

Online
Content

Flashcards and crossword
puzzles for key term practice
are available at
www.cengagebrain.com.

1.
2.
3.
4.

Discuss the importance of data models.

to the end user and the designer.

What is a business rule, and what is its purpose in data modeling?
How do you translate business rules into data model components?

Describe the basic features of the relational data model and discuss their importance

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66 Part1 Database Concepts

5. Explain how the entity relationship (ER) model helped produce a more structured
relational database design environment.

6. Consider the scenario described by the statement “A customer can make many pay-
ments, but each payment is made by only one customer” Use this scenario as the
basis for an entity relationship diagram (ERD) representation.

7. Why is an object said to have greater semantic content than an entity?

8. What is the difference between an object and a class in the object-oriented data
model (OODM)?

9. How would you model Question 6 with an OODM? (Use Figure 2.4 as your guide.)

10. What is an ERDM, and what role does it play in the modern (production) database
environment?

11. What is a relationship, and what three types of relationships exist?

12. Give an example of each of the three types of relationships.

13. What is a table, and what role does it play in the relational model?

14. What is a relational diagram? Give an example.

15. What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)
16. Describe the Big Data phenomenon.

17. What does the term 3 Vs refer to?

18. What is Hadoop and what are its basic components?

19. What is sparse data? Give an example.

20. Define and describe the basic characteristics of a NoSQL database.

21. Using the example of a medical clinic with patients and tests, provide a simple
representation of how to model this example using the relational model and how
it would be represented using the key-value data modeling technique.

22. What is logical independence?
23. What is physical independence?

Problems

Use the contents of Figure 2.1 to work Problems 1-3.

1. Write the business rule(s) that govern the relationship between AGENT and
CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot
ERD.

3. Using the ERD you drew in Problem 2, create the equivalent object representation
and UML class diagram. (Use Figure 2.4 as your guide.)

Using Figure P2.4 as your guide, work Problems 4-5. The DealCo relational diagram
shows the initial entities and attributes for the DealCo stores, which are located in two
regions of the country.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Data Models 67

FIGURE P2.4 THE DEALCO RELATIONAL DIAGRAM

REGION STORE \ EMP-OYEE i log
¥ REGION_CODE %W STORE_CODE = ¥ EMP_CODE L 3 JoB toDE
] SR S S T
REGION_DESCRIPT STORE_NAME \ EMP_TITLE JOB DESCRIFION
IIKHI STORE_YTD-SALES L EMP_LMARKE | | JOB_BASE_PAY
REGION_CODE [EMP_FHAME /
\,. EMP_INITIAL /
'\‘ EMP_DOBE /
JOB_CODE —)
oan |
—_ STORE_CODE

4. Identify each relationship type and write all of the business rules.

5. Create the basic Crow’s Foot ERD for DealCo.

Using Figure P2.6 as your guide, work Problems 6-8. The Tiny College relational dia-
gram shows the initial entities and attributes for the college.

FIGURE P2.6 THETINY COLLEGE RELATIONAL DIAGRAM

COURSE cLAsS ENROLL , | sTUDENT
7 CRS_CODE ¥ CLASS.CODE = = ¥ class.coDE o STU_MUM
DEFT_CODE CRS_CODE T STU_RUK STU.LMSME
CRS_DESCRIPTION CLASS SECTION ENROLL_GRADE STUFNAME
CRS_CREDIT CLASS TIME STULINIT
o CLASS ROOM STU_DOB
FROF_NUM STULHRS
STU.CLass
STUL GPA:
STUL TRANSFER
DEFT_CODE
STUPHONE
FROF_NUM

6. Identify each relationship type and write all of the business rules.

7. Create the basic Crow’s Foot ERD for Tiny College.
8. Create the UML class diagram that reflects the entities and relationships you identi-

fied in the relational diagram.

9. Typically, a hospital patient receives medications that have been ordered by a particular
doctor. Because the patient often receives several medications per day, there is a 1:M
relationship between PATIENT and ORDER. Similarly, each order can include several
medications, creating a 1:M relationship between ORDER and MEDICATION.

a. Identify the business rules for PATIENT, ORDER, and MEDICATION.
b. Create a Crow’s Foot ERD that depicts a relational database model to capture

these business rules.
10. United Broke Artists (UBA) is a broker for not-so-famous artists. UBA maintains
a small database to track painters, paintings, and galleries. A painting is created by
a particular artist and then exhibited in a particular gallery. A gallery can exhibit
many paintings, but each painting can be exhibited in only one gallery. Similarly, a
painting is created by a single painter, but each painter can create many paintings.
Using PAINTER, PAINTING, and GALLERY, in terms of a relational database:

a. What tables would you create, and what would the table components be?

b. How might the (independent) tables be related to one another?

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68 Part1 Database Concepts

11. Using the ERD from Problem 10, create the relational schema. (Create an appropri-
ate collection of attributes for each of the entities. Make sure you use the appropriate
naming conventions to name the attributes.)

12. Convert the ERD from Problem 10 into a corresponding UML class diagram.

13. Describe the relationships (identify the business rules) depicted in the Crow’s Foot
ERD shown in Figure P2.13.

FIGURE P2.13 THE CROW’S FOOT ERD FOR PROBLEM 13

ady

PROFESSOR

14. Create a Crow’s Foot ERD to include the following business rules for the ProdCo
company:

a. [Each sales representative writes many invoices.
b. Each invoice is written by one sales representative.

c. Each sales representative is assigned to one department.
d. Each department has many sales representatives.

e. Each customer can generate many invoices.

f. Each invoice is generated by one customer.

15. Write the business rules that are reflected in the ERD shown in Figure P2.15. (Note
that the ERD reflects some simplifying assumptions. For example, each book is writ-
ten by only one author. Also, remember that the ERD is always read from the “1” to
the “M” side, regardless of the orientation of the ERD components.)

FIGURE P2.15 THE CROW’S FOOT ERD FOR PROBLEM 15

PUBLISHER BooK
publishes
subjnits wrifes
CONTRACT

signs

Chapter 2 Data Models 69

16. Create a Crow’s Foot ERD for each of the following descriptions. (Note that the word
many merely means more than one in the database modeling environment.)

a. Each of the MegaCo Corporation’s divisions is composed of many departments.
Each department has many employees assigned to it, but each employee works
for only one department. Each department is managed by one employee, and
each of those managers can manage only one department at a time.

b. During some period of time, a customer can download many ebooks from
BooksOnline. Each of the ebooks can be downloaded by many customers during
that period of time.

c. An airliner can be assigned to fly many flights, but each flight is flown by only
one airliner.

d. The KwikTite Corporation operates many factories. Each factory is located in a
region, and each region can be “home” to many of KwikTite’s factories. Each fac-
tory has many employees, but each employee is employed by only one factory.

e. An employee may have earned many degrees, and each degree may have been
earned by many employees.

17. Write the business rules that are reflected in the ERD shown in Figure P2.17.

FIGURE P2.17 THE CROW’S FOOT ERD FOR PROBLEM 17

THEATER MOVIE
| shows |
=T]
r-cc;_\'cs
= A

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3 The Relational Database Model

4 Entity Relationship (ER) Modeling
5 Advanced Data Modeling

6 Normalization of Database Tables

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Relational Database Model

In this chapter, you will learn:

« That the relational database model offers a logical view of data

« About the relational model’s basic component: relations

« That relations are logical constructs composed of rows (tuples) and columns (attributes)
« That relations are implemented as tables in a relational DBMS

« About relational database operators, the data dictionary, and the system catalog

« How data redundancy is handled in the relational database model

« Why indexing is important

P (GVI ew In this chapter, you will learn about the relational model’s logical structure and more
about how ERDs (entity relationship diagrams) can be used to design a relational data-
base. You will also learn how the relational database’s basic data components fit into a
logical construct known as a table, and how tables within a database can be related to
one another.
After learning about tables, their components, and their relationships, you will be intro-
duced to basic table design concepts and the characteristics of well-designed and poorly
designed tables. These concepts will become your gateway to the next few chapters.

Data Files and Available Formats

WS Access| Oracle | MSSOL § My SOL WS Access] Oracle | MSSOL | MySOL

CHO3_CollegeTry v 4 v v" CHO03_AviaCo v 4 v v
CHO03_CollegeTry2 v v 4 v" CHO03_BeneCo v 4 4 v
CHO3_InsureCo v v 4 v" CHO03_CollegeQue v v v v
CHO3_Museum v v v v" CHO3_NoComp v v v v
CHO03_SaleCo 4 v v v CHO3_StoreCo 4 4 4 v
CHO03_TinyCollege v v 4 v" CHO03_Theater v v v v
CHO03_Relational_DB v v v v" CHO03_TransCo v v v v

CHO03_VendingCo v v v v

Data Files Available on cengagebrain.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 73

Note

The relational model, introduced by E. F. Codd in 1970, is based on predicate logic and set
theory. Predicate logic, used extensively in mathematics, provides a framework in which
an assertion (statement of fact) can be verified as either true or false. For example, suppose
that a student with a student ID of 12345678 is named Melissa Sanduski. This assertion
can easily be demonstrated to be true or false. Set theory is a mathematical science that
deals with sets, or groups of things, and is used as the basis for data manipulation in the
relational model. For example, assume that set A contains three numbers: 16, 24, and 77.
This set is represented as A(16, 24, 77). Furthermore, set B contains four numbers: 44, 77, 90,
and 11, and so is represented as B(44, 77, 90, 11). Given this information, you can conclude
that the intersection of A and B yields a result set with a single number, 77. This result can
be expressed as A N B = 77. In other words, A and B share a common value, 77.
Based on these concepts, the relational model has three well-defined components:

1. A logical data structure represented by relations (see Sections 3-1, 3-2, and 3-5)

2. A set of integrity rules to enforce that the data is consistent and remains consistent over
time (see Sections 3-3, 3-6, 3-7, and 3-8)

3. A set of operations that defines how data is manipulated (see Section 3-4)

3-1 A Logical View of Data

In Chapter 1, Database Systems, you learned that a database stores and manages both
data and metadata. You also learned that the DBMS manages and controls access to the
data and the database structure. Such an arrangement—placing the DBMS between the
application and the database—eliminates most of the file system’s inherent limitations.
The result of such flexibility, however, is a far more complex physical structure. In fact,
the database structures required by both the hierarchical and network database models
often become complicated enough to diminish efficient database design. The relational
data model changed all of that by allowing the designer to focus on the logical represen-
tation of the data and its relationships, rather than on the physical storage details. To use
an automotive analogy, the relational database uses an automatic transmission to relieve
you of the need to manipulate clutch pedals and gearshifts. In short, the relational model
enables you to view data logically rather than physically.

The practical significance of taking the logical view is that it serves as a reminder of
the simple file concept of data storage. Although the use of a table, quite unlike that of
a file, has the advantages of structural and data independence, a table does resemble a
file from a conceptual point of view. Because you can think of related records as being
stored in independent tables, the relational database model is much easier to understand
than the hierarchical and network models. Logical simplicity tends to yield simple and predicate logic

effective database design methodologies. Used extensively in
mathematics to provide

Because the table plays such a prominent role in the relational model, it deserves a o
) ‘ ;)) a framework in which an
closer look. Therefore, our discussion begins by exploring the details of table structure assertion (statement of
and contents. fact) can be verified as
either true or false.
3-1a Tables and Their Characteristics set theory
A part of mathematical
The logical view of the relational database is facilitated by the creation of data relation- science that deals with
. . . L sets, or groups of things,
ships based on a logical construct known as a relation. Because a relation is a mathemat- , 4
))) .)) and is used as the basis
ical construct, end users find it much easier to think of a relation as a table. A table is for data manipulation in

perceived as a two-dimensional structure composed of rows and columns. A table is also the relational model.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

74 Part2 Design Concepts

called a relation because the relational model’s creator, E. F. Codd, used the two terms as
synonyms. You can think of a table as a persistent representation of a logical relation—
that is, a relation whose contents can be permanently saved for future use. As far as the
table’s user is concerned, a table contains a group of related entity occurrences—that is,
an entity set. For example, a STUDENT table contains a collection of entity occurrences,
each representing a student. For that reason, the terms entity set and table are often used
interchangeably.

Note

The word relation, also known as a dataset in Microsoft Access, is based on the mathe-
matical set theory from which Codd derived his model. Because the relational model uses
attribute values to establish relationships among tables, many database users incorrectly
assume that the term relation refers to such relationships. Many then incorrectly conclude
that only the relational model permits the use of relationships.

You will discover that the table view of data makes it easy to spot and define entity rela-
tionships, thereby greatly simplifying the task of database design. The characteristics of
a relational table are summarized in Table 3.1.

TABLE 3.1

CHARACTERISTICS OF A RELATIONAL TABLE

A table is perceived as a two-dimensional structure composed of rows and columns.

Each table row (tuple) represents a single entity occurrence within the entity set.

Each table column represents an attribute, and each column has a distinct name.

Each intersection of a row and column represents a single data value.

All values in a column must conform to the same data format.

Each column has a specific range of values known as the attribute domain.

The order of the rows and columns is immaterial to the DBMS.

O INon | D WIN =

Each table must have an attribute or combination of attributes that uniquely identifies each row.

The database table shown in Figure 3.1 illustrates the characteristics listed in
Table 3.1.

Note

Relational database terminology is very precise. Unfortunately, file system terminology
sometimes creeps into the database environment. Thus, rows are sometimes referred to as
records, and columns are sometimes labeled as fields. Occasionally, tables are labeled files.
Technically speaking, this substitution of terms is not always appropriate. The database
table is a logical concept rather than a physical concept, and the terms file, record, and field
describe physical concepts. Nevertheless, as long as you recognize that the table is actually
a logical concept rather than a physical construct, you may think of table rows as records
and of table columns as fields. In fact, many database software vendors still use this familiar
file system terminology.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 75

FIGURE 3.1 STUDENT TABLE ATTRIBUTE VALUES

Using the STUDENT table shown in Figure 3.1, you can draw the following conclu-

Table name: STUDENT Database name: Ch03_TinyCollege
|STU_NL|M| STLI_LN.&ME| STLI_FN.&ME| STU_INIT| STU_DOB | STU_HHS| STLI_I:L.&SS| STU_GPA| STLI_TFHANSFEH| DEPT_EEIDE| STLI_PHDNE| FROF_MUM

321452 Bowszer william [12-Feb-1985 42 5o 284 Mo BIOL 2134 205
324257 Smithzon Anne K 15-M w1951 a1ldr 3.27 Yes CIS 2258 222
324258 Brewer Juliette 23-A0g-1973 36 S0 226 Yes ACCT 2258 228
324269 Dblonski "' alter H 1E-5ep-198E6 EE Jr 309 Mo CIS 2114 222
324273 Smith John] 30-Dec-1968 102 5r 211 ez EMGL k| 199
324274 Katinga FRaphael P 21-0ct-1583 114/ 5r 315 Mo ACCT 2267 224
324231 Raobertzon Gerald T 08-4pr-1383 120 5r 387 Mo EDLU 2267 A1
324239 Smith John B A0-Movw-1996 15 Fr 2492 Mo ACCT 2315 230

STU_NUM = Student number

STU_LNAME = Student last name

STU_FNAME = Student first name

STU_INIT = Student middle initial

STU_DOB = Student date of birth

STU_HRS = Credit hours earned

STU_CLASS = Student classification

STU_GPA = Grade point average

STU_TRANSFER = Student transferred from another institution

DEPT_CODE = Department code

STU_PHONE = 4-digit campus phone extension

PROF_NUM = Number of the professor who is the student’s advisor

sions corresponding to the points in Table 3.1: Online
1. The STUDENT table is perceived to be a two-dimensional structure composed of Content =>
8 rows (tuples) and 12 columns (attributes). All of the databases
2. Each row in the STUDENT table describes a single entity occurrence within the used to illustrate the
entity set. (The entity set is represented by the STUDENT table.) For example, row material in this chapter
4 in Figure 3.1 describes a student named Walter H. Oblonski. Given the table con- ~ (see the Data Files list
tents, the STUDENT entity set includes eight distinct entities (rows), or students. at the beginning gfthe
chapter) are available
3. Each column represents an attribute, and each column has a distinct name. at www.cengagebrain.
4. All of the values in a column match the attribute’s characteristics. For example, M. The database
the grade point average (STU_GPA) column contains only STU_GPA entries for Eames i el t:e datg-
each of the table rows. Data must be classified according to its format and func- ds€ Names shown n
. . . the figures.
tion. Although various DBMSs can support different data types, most support at
least the following:
a. Numeric. You can use numeric data to perform meaningful arithmetic procedures.
For example, in Figure 3.1, STU_HRS and STU_GPA are numeric attributes.
b. Character. Character data, also known as text data or string data, can contain any
character or symbol not intended for mathematical manipulation. In Figure 3.1,
STU_CLASS and STU_PHONE are examples of character attributes.
c. Date. Date attributes contain calendar dates stored in a special format known as tuple
the Julian date format. In Figure 3.1, STU_DOB is a date attribute. In the relational model,
. . . bl]
d. Logical. Logical data can only have true or false (yes or no) values. In Figure 3.1, Zta e_row
the STU_TRANSFER attribute uses a logical data format. oman
In data modeling,
5. The column’s range of permissible values is known as its domain. Because the the construct used to
STU_GPA values are limited to the range 0-4, inclusive, the domain is [0,4]. SIS and desc”b? &
attribute’s set of possible
6. The order of rows and columns is immaterial to the user. values.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76 Part2 Design Concepts

primary key (PK)

In the relational model,
an identifier composed
of one or more
attributes that uniquely
identifies a row. Also, a
candidate key selected
as a unique entity
identifier. See also key.

key

One or more attributes
that determine other
attributes. See also
superkey, candidate
key, primary key (PK),
secondary key, and
foreign key.

determination

The role of a key. In the
context of a database
table, the statement “A
determines B"indicates
that knowing the value
of attribute A means that
the value of attribute B
can be looked up.

functional
dependence

Within a relation R, an
attribute B is functionally
dependent on an
attribute A if and only if
a given value of attribute
A determines exactly
one value of attribute

B. The relationship

"B is dependent on

A"is equivalent to A
determines B,"and is
written as A — B.

determinant

Any attribute in a specific
row whose value directly
determines other values
in that row. See also
Boyce-Codd normal form
(BCNF).

dependent

An attribute whose
value is determined by
another attribute.

7. Each table must have a primary key. In general terms, the primary key (PK) is
an attribute or combination of attributes that uniquely identifies any given row.
In this case, STU_NUM (the student number) is the primary key. Using the data
in Figure 3.1, observe that a student’s last name (STU_LNAME) would not be a
good primary key because several students have the last name of Smith. Even the
combination of the last name and first name (STU_FNAME) would not be an
appropriate primary key because more than one student is named John Smith.

3-2 Keys

In the relational model, keys are important because they are used to ensure that each row
in a table is uniquely identifiable. They are also used to establish relationships among
tables and to ensure the integrity of the data. A key consists of one or more attributes that
determine other attributes. For example, an invoice number identifies all of the invoice
attributes, such as the invoice date and the customer name.

One type of key, the primary key, has already been introduced. Given the structure of
the STUDENT table shown in Figure 3.1, defining and describing the primary key seem
simple enough. However, because the primary key plays such an important role in the
relational environment, you will examine the primary key’s properties more carefully.
In this section, you also will become acquainted with superkeys, candidate keys, and
secondary keys.

3-2a Dependencies

The role of a key is based on the concept of determination. Determination is the state
in which knowing the value of one attribute makes it possible to determine the value
of another. The idea of determination is not unique to the database environment. You
are familiar with the formula revenue — cost = profit. This is a form of determination,
because if you are given the revenue and the cost, you can determine the profit. Given
profit and revenue, you can determine the cost. Given any two values, you can determine
the third. Determination in a database environment, however, is not normally based on
a formula but on the relationships among the attributes.

If you consider what the attributes of the STUDENT table in Figure 3.1 actually
represent, you will see a relationship among the attributes. If you are given a value for
STU_NUM, then you can determine the value for STU_LNAME because one and only
one value of STU_LNAME is associated with any given value of STU_NUM. A specific
terminology and notation is used to describe relationships based on determination.
The relationship is called functional dependence, which means that the value of one
or more attributes determines the value of one or more other attributes. The standard
notation for representing the relationship between STU_NUM and STU_LNAME is
as follows:

STU_NUM — STU_LNAME

In this functional dependency, the attribute whose value determines another is called the
determinant or the key. The attribute whose value is determined by the other attribute
is called the dependent. Using this terminology, it would be correct to say that STU_
NUM is the determinant and STU_LNAME is the dependent. STU_NUM functionally
determines STU_LNAME, and STU_LNAME is functionally dependent on STU_NUM.
As stated earlier, functional dependence can involve a determinant that comprises more
than one attribute and multiple dependent attributes. Refer to the STUDENT table for
the following example:

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 77

STU_NUM — (STU_LNAME, STU_FNAME, STU_GPA)
and

(STU_ENAME, STU_LNAME, STU_INIT, STU_PHONE) — (STU_DOB, STU_HRS,
STU_GPA)

Determinants made of more than one attribute require special consideration. It is
possible to have a functional dependency in which the determinant contains attri-
butes that are not necessary for the relationship. Consider the following two functional
dependencies:

STU_NUM — STU_GPA
(STU_NUM, STU_LNAME) — STU_GPA

In the second functional dependency, the determinant includes STU_LNAME, but this
attribute is not necessary for the relationship. The functional dependency is valid because
given a pair of values for STU_NUM and STU_LNAME, only one value would occur for
STU_GPA. A more specific term, full functional dependence, is used to refer to func-
tional dependencies in which the entire collection of attributes in the determinant is nec-
essary for the relationship. Therefore, the dependency shown in the preceding example is
a functional dependency, but not a full functional dependency.

3-2b Types of Keys

Recall that a key is an attribute or group of attributes that can determine the values of
other attributes. Therefore, keys are determinants in functional dependencies. Several
different types of keys are used in the relational model, and you need to be familiar with
them.

A composite key is a key that is composed of more than one attribute. An attribute
that is a part of a key is called a key attribute. For example,

STU_NUM — STU_GPA
(STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE) — STU_HRS

In the first functional dependency, STU_NUM is an example of a key composed of only
one key attribute. In the second functional dependency, (STU_LNAME, STU_FNAME,
STU_INIT, STU_PHONE) is a composite key composed of four key attributes.

A superkey is a key that can uniquely identify any row in the table. In other words,
a superkey functionally determines every attribute in the row. In the STUDENT table,
STU_NUM is a superkey, as are the composite keys (STU_NUM, STU_LNAME), (STU_
NUM, STU_LNAME, STU_INIT), and (STU_LNAME, STU_ENAME, STU_INIT,
STU_PHONE). In fact, because STU_NUM alone is a superkey, any composite key that
has STU_NUM as a key attribute will also be a superkey. Be careful, however, because
not all keys are superkeys. For example, Gigantic State University determines its student
classification based on hours completed, as shown in Table 3.2.

Therefore, you can write STU_HRS — STU_CLASS.

However, the specific number of hours is not dependent on the classification. It is quite
possible to find a junior with 62 completed hours or one with 84 completed hours. In
other words, the classification (STU_CLASS) does not determine one and only one value
for completed hours (STU_HRS).

full functional
dependence

A condition in which an
attribute is functionally
dependenton a
composite key but not
on any subset of the key.

composite key
A multiple-attribute key.

key attributes

The attributes that form
a primary key. See also
prime attribute.

superkey

An attribute or attributes
that uniquely identify
each entity in a table.
See key.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78 Part2 Design Concepts

Note

TABLE 3.2

STUDENT CLASSIFICATION

HOURS COMPLETED CLASSIFICATION
Less than 30 Fr

30-59 So

60-89 Jr

90 or more Sr

One specific type of superkey is called a candidate key. A candidate key is a minimal
superkey—that is, a superkey without any unnecessary attributes. A candidate key is
based on a full functional dependency. For example, STU_NUM would be a candidate
key, as would (STU_LNAME, STU_FNAME, STU_INIT, STU_PHONE). On the other
hand, (STU_NUM, STU_LNAME) is a superkey, but it is not a candidate key because
STU_LNAME could be removed and the key would still be a superkey. A table can have
many different candidate keys. If the STUDENT table also included the students’ Social
Security numbers as STU_SSN, then it would appear to be a candidate key. Candidate
keys are called candidates because they are the eligible options from which the designer
will choose when selecting the primary key. The primary key is the candidate key chosen
to be the primary means by which the rows of the table are uniquely identified.

Entity integrity is the condition in which each row (entity instance) in the table has
its own unique identity. To ensure entity integrity, the primary key has two requirements:
(1) all of the values in the primary key must be unique, and (2) no key attribute in the
primary key can contain a null.

A nullis no value at all. It does not mean a zero or a space. A null is created when you press
the Enter key or the Tab key to move to the next entry without making an entry of any kind.
Pressing the Spacebar creates a blank (or a space).

candidate key

A minimal superkey;
that is, a key that does
not contain a subset of
attributes that is itself a
superkey. See key.
entity integrity

The property of a
relational table that
guarantees each entity
has a unique value in a
primary key and that the
key has no null values.

null

The absence of an
attribute value. Note that
a nullis not a blank.

Null values are problematic in the relational model. A null is the absence of any
data value, and it is never allowed in any part of the primary key. From a theoretical
perspective, it can be argued that a table that contains a null is not properly a relational
table at all. From a practical perspective, however, some nulls cannot be reasonably
avoided. For example, not all students have a middle initial. As a general rule, nulls
should be avoided as much as reasonably possible. In fact, an abundance of nulls is
often a sign of a poor design. Also, nulls should be avoided in the database because
their meaning is not always identifiable. For example, a null could represent any of the
following:

o An unknown attribute value
« A known, but missing, attribute value
« A “not applicable” condition

Depending on the sophistication of the application development software, nulls can
create problems when functions such as COUNT, AVERAGE, and SUM are used. In
addition, nulls can create logical problems when relational tables are linked.

In addition to its role in providing a unique identity to each row in the table, the
primary key may play an additional role in the controlled redundancy that allows the

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 79

relational model to work. Recall from Chapter 2 that a hallmark of the relational model
is that relationships between tables are implemented through common attributes as a
form of controlled redundancy. For example, Figure 3.2 shows PRODUCT and VEN-
DOR tables that are linked through a common attribute, VEND_CODE. VEND_CODE
is referred to as a foreign key in the PRODUCT table. A foreign key (FK) is the primary
key of one table that has been placed into another table to create a common attribute. In
Figure 3.2, the primary key of VENDOR, VEND_CODE, was placed in the PRODUCT
table; therefore, VEND_CODE is a foreign key in PRODUCT. One advantage of using a
proper naming convention for table attributes is that you can identify foreign keys more
easily. For example, because the STUDENT table in Figure 3.1 used a proper naming
convention, you can identify two foreign keys in the table (DEPT_CODE and PROF_
NUM) that imply the existence of two other tables in the database (DEPARTMENT and
PROFESSOR) related to STUDENT.

FIGURE 3.2 AN EXAMPLE OF A SIMPLE RELATIONAL DATABASE

Table name: PRODUCT
Primary key: PROD_CODE
Foreign key: VEND_CODE

Database name: Ch03_SaleCo

| PROD_CODE | FROD_DESCRIPT PROD_PRICE | PROD_ON_HAND | YEND_COUE |
001278-48 | Claw hammer 12.95 23 232
123-210U% Houselite chain sawe, 16-in. bar 15999 4 235
QER-34256 | Sledge hammer, 16-Ik, head 1363 £ 23

SRE-BSTUG | Rat-tail file 299 15 232
TIX/A2450 | Stesl tape, 12-#. lenoth .79 8 235

link

| YEWD_CODE | WEWD_CONTACT | WEWD_AREACOUE | WEND_PHOME

Table name: VENDOR 230 Shelly K. Smithgon | GO 5551234
Primary key: VEND_CODE 231 | James Johnzon B13 123-4536
Foreign key; none 232 Annelize Crystall | GOS 224-2134
233 Candice\Wsllzce 904 342-6567
234 Arthur Jones 15 123-3324
235 Henry Ortozo E15 599-3425

Just as the primary key has a role in ensuring the integrity of the database, so does
the foreign key. Foreign keys are used to ensure referential integrity, the condition in
which every reference to an entity instance by another entity instance is valid. In other
words, every foreign key entry must either be null or a valid value in the primary key of
the related table. Note that the PRODUCT table has referential integrity because every
entry in VEND_CODE in the PRODUCT table is either null or a valid value in VEND_
CODE in the VENDOR table. Every vendor referred to by a row in the PRODUCT table
is a valid vendor.

Finally, a secondary key is defined as a key that is used strictly for data retrieval
purposes. Suppose that customer data is stored in a CUSTOMER table in which
the customer number is the primary key. Do you think that most customers will
remember their numbers? Data retrieval for a customer is easier when the cus-
tomer’s last name and phone number are used. In that case, the primary key is
the customer number; the secondary key is the combination of the customer’s last
name and phone number. Keep in mind that a secondary key does not necessarily
yield a unique outcome. For example, a customer’s last name and home telephone
number could easily yield several matches in which one family lives together and
shares a phone line. A less efficient secondary key would be the combination of the
last name and zip code; this could yield dozens of matches, which could then be
combed for a specific match.

foreign key (FK)

An attribute or attributes
in one table whose
values must match the
primary key in another
table or whose values
must be null. See key.

referential integrity
A condition by which
a dependent table’s
foreign key must have
either a null entry or a
matching entry in the
related table.

secondary key

A key used strictly for
data retrieval purposes.
For example, customers
are not likely to know
their customer number
(primary key), but the
combination of last
name, first name, middle
initial, and telephone
number will probably
match the appropriate
table row. See also key.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80 Part2 Design Concepts

A secondary key’s effectiveness in narrowing down a search depends on how restric-
tive the key is. For instance, although the secondary key CUS_CITY is legitimate from a
database point of view, the attribute values New York or Sydney are not likely to produce
a usable return unless you want to examine millions of possible matches. (Of course,
CUS_CITY is a better secondary key than CUS_COUNTRY.)

Table 3.3 summarizes the various relational database table keys.

TABLE 3.3

RELATIONAL DATABASE KEYS

KEY TYPE DEFINITION

Superkey An attribute or combination of attributes that uniquely identifies each row in a table
Candidate key A minimal (irreducible) superkey; a superkey that does not contain a subset of attributes that is

itself a superkey

Primary key A candidate key selected to uniquely identify all other attribute values in any given row;
cannot contain null entries

Foreign ke An attribute or combination of attributes in one table whose values must either match the
g y
primary key in another table or be null

Secondary key An attribute or combination of attributes used strictly for data retrieval purposes

3-3 Integrity Rules

Relational database integrity rules are very important to good database design. RDBMSs
enforce integrity rules automatically, but it is much safer to make sure your application
design conforms to the entity and referential integrity rules mentioned in this chapter.
Those rules are summarized in Table 3.4.

TABLE 3.4

INTEGRITY RULES

ENTITY INTEGRITY DESCRIPTION

Requirement All primary key entries are unique, and no part of a primary key may be null.
Purpose Each row will have a unique identity, and foreign key values can properly reference

primary key values.

Example No invoice can have a duplicate number, nor can it be null; in short, all invoices are
uniquely identified by their invoice number.

REFERENTIAL INTEGRITY A DESCRIPTION

Requirement A foreign key may have either a null entry, as long as it is not a part of its table’s
primary key, or an entry that matches the primary key value in a table to which it
is related; (every non-null foreign key value must reference an existing primary key
value).

Purpose It is possible for an attribute not to have a corresponding value, but it will be
impossible to have an invalid entry; the enforcement of the referential integrity rule
makes it impossible to delete a row in one table whose primary key has mandatory
matching foreign key values in another table.

Example A customer might not yet have an assigned sales representative (number), but it will
be impossible to have an invalid sales representative (number).

The integrity rules summarized in Table 3.4 are illustrated in Figure 3.3.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 81

FIGURE 3.3 AN ILLUSTRATION OF INTEGRITY RULES

Table name: CUSTOMER
Primary key: CUS_CODE
Foreign key: AGENT_CODE

Database name: Ch03_InsureCo

CUS_CODE [CUS_LNAME | CUS_FNAME [CUS_INITIAL | CLUS_RENEWY_DATE [AGENT_CODE|
1001 0| Ramas Alired A 05-Apr-2016 502
10011 | Dunne Leona K 16-Jun-2016 a1
10012 Smith Katthy Wi 29-Jan-2017 502
10013 Oloseski Paul F 14-0ct-2016
10014 Crlando Mlyron 28-Dec-2016 201
10015 O'Brian Ay B 22-Sep-2016 503
10016 Brown James =] 25-Mar-2017 S0z
10017 williams George A7 -dul-201 6 03
10015 Farriss Anne =] 03-Dec-2016 501
10019 Smith Olette K 14-Mar-2017 s03

Table name: AGENT (only five selected fields are shown)
Primary key: AGENT_CODE
Foreign key: none

AGENT_CODE [AGENT_AREACODE [AGENT_PHONE[AGENT_LNAME | AGENT ¥TD_GLS
501 713 226-1249 Alby 132735.75
502 615 B2-1244 Hahn 136067 35
503 615 123-5589 Okon 12709345

Note the following features of Figure 3.3.

Entity integrity. The CUSTOMER table’s primary key is CUS_CODE. The CUS-
TOMER primary key column has no null entries, and all entries are unique. Similarly,
the AGENT table’s primary key is AGENT_CODE, and this primary key column is
also free of null entries.

Referential integrity. The CUSTOMER table contains a foreign key, AGENT_CODE,
that links entries in the CUSTOMER table to the AGENT table. The CUS_CODE row
identified by the (primary key) number 10013 contains a null entry in its AGENT_
CODE foreign key because Paul E Olowski does not yet have a sales representative
assigned to him. The remaining AGENT_CODE entries in the CUSTOMER table all
match the AGENT_CODE entries in the AGENT table.

To avoid nulls, some designers use special codes, known as flags, to indicate the

absence of some value. Using Figure 3.3 as an example, the code -99 could be used as the
AGENT_CODE entry in the fourth row of the CUSTOMER table to indicate that cus-
tomer Paul Olowski does not yet have an agent assigned to him. If such a flag is used, the
AGENT table must contain a dummy row with an AGENT_CODE value of —99. Thus,
the AGENT table’ first record might contain the values shown in Table 3.5.

TABLE 3.5

flags

Special codes
implemented by
designers to trigger a
required response, alert
end users to specified
conditions, or encode
values. Flags may be
used to prevent nulls by
bringing attention to the
absence of a value in a
table.

A DUMMY VARIABLE VALUE USED AS A FLAG

AGENT_CODE

AGENT_AREACODE A AGENT_PHONE AGENT_LNAME

AGENT_YTD_SLS

000 000-0000 None

$0.00

Chapter 4, Entity Relationship (ER) Modeling, discusses several ways to handle nulls.
Other integrity rules that can be enforced in the relational model are the NOT

NULL and UNIQUE constraints. The NOT NULL constraint can be placed on a col-
umn to ensure that every row in the table has a value for that column. The UNIQUE
constraint is a restriction placed on a column to ensure that no duplicate values exist
for that column.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82 Part2 Design Concepts

Note

3-4 Relational Algebra

The data in relational tables is of limited value unless the data can be manipulated to gen-
erate useful information. This section describes the basic data manipulation capabilities
of the relational model. Relational algebra defines the theoretical way of manipulating
table contents using relational operators. In Chapter 7, Introduction to Structured Query
Language (SQL), and Chapter 8, Advanced SQL, you will learn how SQL commands can
be used to accomplish relational algebra operations.

The degree of relational completeness can be defined by the extent to which relational
algebra is supported. To be considered minimally relational, the DBMS must support the
key relational operators SELECT, PROJECT, and JOIN.

relational algebra

A set of mathematical
principles that form the
basis for manipulating
relational table contents;
the eight main functions
are SELECT, PROJECT,
JOIN, INTERSECT, UNION,
DIFFERENCE, PRODUCT,
and DIVIDE.

relvar

Short for relation
variable, a variable that
holds a relation. A relvar
is a container (variable)
for holding relation data,
not the relation itself.

3-4a Formal Definitions and Terminology

Recall that the relational model is actually based on mathematical principles, and manip-
ulating the data in the database can be described in mathematical terms. The good news
is that, as database professionals, we do not have to write mathematical formulas to work
with our data. Data is manipulated by database developers and programmers using
powerful languages like SQL that hide the underlying math. However, understanding the
underlying principles can give you a good feeling for the types of operations that can be
performed, and it can help you to understand how to write your queries more efficiently
and effectively.

One advantage of using formal mathematical representations of operations is that
mathematical statements are unambiguous. These statements are very specific, and they
require that database designers be specific in the language used to explain them. As
previously explained, it is common to use the terms relation and table interchangeably.
However, since the mathematical terms need to be precise, we will use the more specific
term relation when discussing the formal definitions of the various relational algebra
operators.

Before considering the specific relational algebra operators, it is necessary to formal-
ize our understanding of a table.

One important aspect of using the specific term relation is that it acknowledges the
distinction between the relation and the relation variable, or relvar, for short. A relation
is the data that we see in our tables. A relvar is a variable that holds a relation. For exam-
ple, imagine you were writing a program and created a variable named gty for holding
integer data. The variable gty is not an integer itself; it is a container for holding integers.
Similarly, when you create a table, the table structure holds the table data. The structure
is properly called a relvar, and the data in the structure would be a relation. The relvar
is a container (variable) for holding relation data, not the relation itself. The data in the
table is a relation.

A relvar has two parts: the heading and the body. The relvar heading contains the
names of the attributes, while the relvar body contains the relation. To conveniently
maintain this distinction in formulas, an unspecified relation is often assigned a lower-
case letter (e.g., “r”’), while the relvar is assigned an uppercase letter (e.g., “R”). We could
then say that r is a relation of type R, or r(R).

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 83

3-4b Relational Set Operators

The relational operators have the property of closure; that is, the use of relational alge-
bra operators on existing relations (tables) produces new relations. Numerous operators
have been defined. Some operators are fundamental, while others are convenient but
can be derived using the fundamental operators. In this section, the focus will be on the
SELECT (or RESTRICT), PROJECT, UNION, INTERSECT, DIFFERENCE, PRODUCT,
JOIN, and DIVIDE operators.

Select (Restrict) SELECT, also known as RESTRICT, is referred to as a unary oper-
ator because it only uses one table as input. It yields values for all rows found in the
table that satisty a given condition. SELECT can be used to list all of the rows, or it
can yield only rows that match a specified criterion. In other words, SELECT yields
a horizontal subset of a table. SELECT will not limit the attributes returned so all
attributes of the table will be included in the result. The effect of a SELECT operation
is shown in Figure 3.4.

FIGURE 3.4 SELECT

Original table New table

P_CODE [P_DESCRIPT| PRICE F_CODE | F_DESCRIFT| FRICE
i Lamp 20 e SELECTALL yields T R

amp . .

123455 Box Fan 10.99 123458 Box Fan 10.99
213345 |Sv battery 1.92 213345 |Sv battery 1.92
254457 100 bulb 1.47 254457 | 100W bulb 1.47
311452 Powerdrill 34.99 311452 | Powerdrill 34.99

SELECT only PRICE less than $2.00 yields

SELECT only P_CODE = 311452 yields

P_CODE | P_DESCRIPT| PRICE
213345 9v battery 1.92
254467 | 100% bulb 1.47

[P_CODE [P_DESCRIPT| PRICE |
[311452 | Powerdrill 3499

Note

Formally, SELECT is denoted by the lowercase Greek letter sigma (o). Sigma is followed by
the condition to be evaluated (called a predicate) as a subscript, and then the relation is
listed in parentheses. For example, to SELECT all of the rows in the CUSTOMER table that
have the value‘10010’in the CUS_CODE attribute, you would write the following:

0-cus_code =10010 (customer)

Project PROJECT yields all values for selected attributes. It is also a unary operator,
accepting only one table as input. PROJECT will return only the attributes requested,
in the order in which they are requested. In other words, PROJECT yields a vertical
subset of a table. PROJECT will not limit the rows returned so all rows of the specified
attributes will be included in the result. The effect of a PROJECT operation is shown
in Figure 3.5.

closure

A property of relational
operators that permits
the use of relational
algebra operators on
existing tables (relations)
to produce new relations.

SELECT

In relational algebra, an
operator used to select
a subset of rows. Also
known as RESTRICT.

RESTRICT

See SELECT.

PROJECT

In relational algebra, an
operator used to select a
subset of columns.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84 Part2 Design Concepts

FIGURE 3.5 PROJECT

Original table New table
F_CODE | P_DESCRIFT| FRICE FRICE
123456 Flashlight 5.26 g 5.26
123457 |Lamp 25.15| PROJECT PRICE yields 2515
123455 |Box Fan 10.99 10.99
213345 9v battery 192 1.92
254467 | 100 bulb 1.47 147
311452 | Powerdrill 34.99 2400

PROJECT P_DESCRIPT and PRICE yields P_DESCRIF’T| PRICE
— Flashlight 526
Lamp 2819
Box Fan 10.99
Sv battery 1.92
1004y bulb 1.47
Powerdrill 34.99
PROJECT P_CODE and PRICE yields P_CODE | PRICE
— 123456 526
123457 25.15
123458 10.88
213345 1.92
254467 1.47
311452 3489

UNION

In relational algebra, an
operator used to merge
(append) two tables into
a new table, dropping
the duplicate rows. The
tables must be union-
compatible.

union-compatible
Two or more tables that
have the same number

of columns and the
corresponding columns
have compatible domains.

Note

Formally, PROJECT is denoted by the Greek letter pi (). Some sources use the uppercase
letter, and other sources use the lowercase letter. Codd used the lowercase m in his origi-
nal article on the relational model, and that is what we use here. Piis followed by the list
of attributes to be returned as subscripts, and then the relation listed in parentheses. For
example, to PROJECT the CUS_FNAME and CUS_LNAME attributes in the CUSTOMER
table, you would write the following:

m (customer)

cus,fname, cus_Iname
Since relational operators have the property of closure, that is, they accept relations as
input and produce relations as output, it is possible to combine operators. For example,
you can combine the two previous operators to find the customer first and last name of
the customer with customer code 10010:

(customer))

T[cus_fname, cus_Iname (ocus_code =10010

Union UNION combines all rows from two tables, excluding duplicate rows. To be used in the
UNION, the tables must have the same attribute characteristics; in other words, the columns
and domains must be compatible. When two or more tables share the same number of col-
umns, and when their corresponding columns share the same or compatible domains, they are
said to be union-compatible. The effect of a UNION operation is shown in Figure 3.6.

FIGURE 3.6 UNION

F_CODE [P_DESCRIFT| PRICE

123456 | Flashlight 5.25
123457 |Lamp 2515
123458 |Box Fan 10.99
213345 | S battery 1.92
254467 | 100WY bulb 1.47
3114582 | Powerdrill 34.99

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

UNION

F_CODE[P_DESCRIFT | PRICE

345678 Microwave 160.00
345679 Dishwasher 500.00
123458 | Box Fan 10.99

yields

F_CODE [P_DESCRIPT]| FRICE

123456 Flashlight 5.26
123457 Lamp 2515
123458 Box Fan 10.89
213345 9y hattery 1.92
254467 1004y hulb 1.47
311452 Powerdrill 34.89
345678 Microwave 160
345679 Dishwasher 500

Chapter 3 The Relational Database Model 85

Note

UNION is denoted by the symbol L. If the relations SUPPLIER and VENDOR are union-
compatible, then a UNION between them would be denoted as follows:

supplier U vendor

Itis rather unusual to find two relations that are union-compatible in a database. Typically,
PROJECT operators are applied to relations to produce results that are union-compatible. For
example, assume the SUPPLIER and VENDOR tables are not union-compatible. If you wish to
produce a listing of all vendor and supplier names, then you can PROJECT the names from
each table and then perform a UNION with them.

(supplier) U n (vendor)

I
supplier_name vendor_name

Intersect INTERSECT yields only the rows that appear in both tables. As with UNION,
the tables must be union-compatible to yield valid results. For example, you cannot use
INTERSECT if one of the attributes is numeric and one is character-based. For the rows
to be considered the same in both tables and appear in the result of the INTERSECT, the
entire rows must be exact duplicates. The effect of an INTERSECT operation is shown
in Figure 3.7.

FIGURE 3.7 INTERSECT

STU_FNAME| STU_LNAME | INTERSECT | EMP_FNAME| EMP_LNAME | yields

STU_FNAME |

STU_LNAME

Jones Franklin Franklin

Lopez #

George

Johnson

Williarn
Franklin
Susan

Turner
Johnzon
Rogers

Srith
Robinson
Johnson
Lopez

Jane
Peter
Franklin
Martin

Note

INTERSECT is denoted by the symbol . If the relations SUPPLIER and VENDOR are
union-compatible, then an INTERSECT between them would be denoted as follows:
supplier N vendor

Just as with the UNION operator, it is unusual to find two relations that are union-
compatible in a database, so PROJECT operators are applied to relations to produce
results that can be manipulated with an INTERSECT operator. For example, again assume
the SUPPLIER and VENDOR tables are not union-compatible. If you wish to produce a
listing of any vendor and supplier names that are the same in both tables, then you can
PROJECT the names from each table and then perform an INTERSECT with them.

(supplier) "1 (vendor)

supplier_name vendor_name

Difference DIFFERENCE yields all rows in one table that are not found in the
other table; that is, it subtracts one table from the other. As with UNION, the
tables must be union-compatible to yield valid results. The effect of a DIFFER-
ENCE operation is shown in Figure 3.8. However, note that subtracting the first
table from the second table is not the same as subtracting the second table from
the first table.

INTERSECT

In relational algebra, an
operator used to yield
only the rows that are
common to two union-
compatible tables.

DIFFERENCE

In relational algebra, an
operator used to yield all
rows from one table that
are not found in another
union-compatible table.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86 Part2 Design Concepts

FIGURE 3.8 DIFFERENCE

Note

DIFFERENCE is denoted by the minus symbol —. If the relations SUPPLIER and VENDOR are
union-compatible, then an DIFFERENCE of SUPPLIER minus VENDOR would be written as

follows:

supplier — vendor

Assuming the SUPPLIER and VENDOR tables are not union-compatible, producing a list of
any supplier names that do not appear as vendor names, then you can use a DIFFERENCE

operator.

n .
supplier_name

(supplier) —m

vendor_name

(vendor)

STU_FMAME [STU_LWamE | DIFFERENCE [EMP_FNAME | EMP_LMAME | yields STU_FNAME [STU_LNAME
George Jones Franklin Lopez George Jones

Jane Smith Williarm Tumer Jane Smith

Peter Robinson Franklin Johnson Peter Robinson
Franklin Jahnsan Susan Rogers Mlartin Lapez

Martin Lopez

Product PRODUCT yields all possible pairs of rows from two tables—also known as
the Cartesian product. Therefore, if one table has 6 rows and the other table has 3 rows,
the PRODUCT yields a list composed of 6 x 3 = 18rows. The effect of a PRODUCT
operation is shown in Figure 3.9.

FIGURE 3.9 PRODUCT

P_CCODE [P_DESCRIPT| FRICE PRODUCT [ETORE[AISLE | SHELF yields F_CODE | P_DESCRIPT] PRICE [STORE[AISLE [SHELF

123456 Flashlight 526 73 W 5 # 123456 Flashlight 5.2623 Y 5

123457 Lamp 2515 24 K E] 123456 Flashlight 52624 K 9

123458 Box Fan 1099 25 z B 123456 Flashlight 52625 z 3

213345 |9v battery 192 123457 Lamp 251523 W 5

254467 | 100W bulb 147 123457 Lamp 2515 24 K 9

311452 | Powerdrill 34.99 123457 Lamp 251525 z 3
123458 | Box Fan 10.99/23 W 5
123458 Box Fan 10.99/24 K 9
123458 Box Fan 10.99)25 z [
213345 O battery 1.52/23 W 5
213345 9 battery 1.92/24 K 9
213345 9v battery 1.82/25 z 6
311452 Powerdril 349923 w 5
311452 Powerdril 34.99 24 K 3
311452 Powerdril 34.99)26 z 6
254467 100 bulb 1.47/23 W 5
254467 100 bulb 1.4724 K 9
254467 100 bulb 1.47/25 z 3

Note
PRODUCT is denoted by the multiplication symbol x. The PRODUCT of the CUSTOMER
and AGENT relations would be written as follows:
PRODUCT customer X agent

In relational algebra, an
operator used to yield all

possible pairs of rows from

two tables. Also known as
the Cartesian product.

A Cartesian product produces a set of sequences in which every member of one set is
paired with every member of another set. In terms of relations, this means that every
tuple in one relation is paired with every tuple in the second relation.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 87

Join JOIN allows information to be intelligently combined from two or more tables.
JOIN is the real power behind the relational database, allowing the use of independent
tables linked by common attributes. The CUSTOMER and AGENT tables shown in
Figure 3.10 will be used to illustrate several types of joins.

FIGURE 3.10 TWO TABLES THAT WILL BE USED IN JOIN ILLUSTRATIONS

Table name: CUSTOMER

CUS_CODE | CUS_LNAME | CUS_ZIP | AGENT_CODE |
1132445 | wialker 32145 [231
1217762 Adares 32145 125
1312243 | Rakowski 34129 167
1321242 Rodrigusz 37134 125
1542311 | Smithzon 7134|421
1657399 | Wanloo 32145 | 231

Table name: AGENT

AGENT_CODE | SGENT_PHONE |
125 B152439857
167 153426778
231 B152431124
333 9041234445

A natural join links tables by selecting only the rows with common values in their com-
mon attribute(s). A natural join is the result of a three-stage process:

1. First, a PRODUCT of the tables is created, yielding the results shown in

Figure 3.11.

FIGURE 3.11 NATURAL JOIN, STEP 1: PRODUCT

CUS_CODE | CUS_LNAME | CUS_ZIP | CUSTOMER AGENT_CODE | AGENT. AGENT_CODE | AGENT_PHONE

1132445 Walker 32145 231
1132445 Walker 32145 231
1132445 Walker 32145 231
1132445 Walker 32145 231
1217752 Adares 32145 125
1217782 Adares 32145 125
1217782 Adares 32145 125
1217782 Adares 32145 125

1312243 Rakowski 34129 167
1312243 Rakowski 34129 167
1312243 Rakowski 34128 167
1312243 Rakowski 34129 167
1321242 Rodriguez 37134 125
1321242 Rodriguez 37134 125
1321242 Rodriguez 37134 125
1321242 Rodriguez 37134 125
1542311 Smithson 37134 421
1542311 Smithson 37134 421

1542311 Smithson 37134 421
1542311 Smithson 37134 421
1657359 “anlog 32145 3
1657359 “anloo 32145 23
1657399 Wanloo 32145 231
1657359 “anloo 32145 231

125 B152439357
167 B153426778
231 B152431124
333 9041234445
125 B152439857
167 B153426778
231 B152431124
333 9041234445
125 B152439857
167 B153426778
231 G152431124
333 9041234445
125 B152439857
167 B153426778
231 G152431124
333 9041234445
125 B152439857
167 B153426778
231 B152431124
333 9041234445
125 B152439857
167 B153426778
231 G152431124
333 9041234445

2. Second, a SELECT is performed on the output of Step 1 to yield only the
rows for which the AGENT_CODE values are equal. The common col-
umns are referred to as the join columns. Step 2 yields the results shown in

Figure 3.12.

JOIN

In relational algebra, a
type of operator used
to yield rows from two
tables based on criteria.
There are many types
of joins, such as natural
join, theta join, equijoin,
and outer join.

natural join

A relational operation
that yields a new table
composed of only the
rows with common
values in their common
attribute(s).

join columns
Columns that are used
in the criteria of join
operations. The join
columns generally share
similar values.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88 Part2 Design Concepts

FIGURE 3.12 NATURAL JOIN, STEP 2: SELECT

equijoin

A join operator that
links tables based on

an equality condition
that compares specified
columns of the tables.

Note

CUS_CODE | CUS_LMAME [CUS_ZIP | CUSTOMER. AGENT_CODE | AGENT AGENT_CODE | AGENT_PHONE
1217782 Adares 32145 125 126 5152439887
1321242 Rodriguez 7134 125 125 5152439887
1312243 Rakowski 34123 167 167 153426778
1132445 Walker 32145 |23 231 152431124
1657399 “anlon 32145 |23 231 152431124

3. A PROJECT is performed on the results of Step 2 to yield a single copy of each
attribute, thereby eliminating duplicate columns. Step 3 yields the output shown
in Figure 3.13.

FIGURE 3.13 NATURAL JOIN, STEP 3: PROJECT

CUS_CODE | CUS_LMNAME | CUS_ZIP | AGENT_CODE | AGENT_PHOME
1217782 Adares 32145 125 5152439857
1321242 Rodriguez 37134 125 5152439897
1312243 Rakowski 34129 167 5153426778
1132445 Walker 32145 231 6152431124
1657399 “anloo 32145 231 5152431124

The final outcome of a natural join yields a table that does not include unmatched

pairs and provides only the copies of the matches.

Note a few crucial features of the natural join operation:

If no match is made between the table rows, the new table does not include the
unmatched row. In that case, neither AGENT_CODE 421 nor the customer whose
last name is Smithson is included. Smithson’s AGENT CODE 421 does not match
any entry in the AGENT table.

The column on which the join was made—that is, AGENT_CODE—occurs only once
in the new table.

If the same AGENT_CODE were to occur several times in the AGENT table, a
customer would be listed for each match. For example, if the AGENT_CODE 167
occurred three times in the AGENT table, the customer named Rakowski would also
occur three times in the resulting table because Rakowski is associated with AGENT_
CODE 167. (Of course, a good AGENT table cannot yield such a result because it
would contain unique primary key values.)

Natural join is normally just referred to as JOIN in formal treatments. JOIN is denoted by the
symbol . The JOIN of the CUSTOMER and AGENT relations would be written as follows:
customer X agent

Notice that the JOIN of two relations returns all of the attributes of both relations, except
only one copy of the common attribute is returned. Formally, this is described as a UNION
of the relvar headings. Therefore, the JOIN of the relations (c X a) includes the UNION of
the relvars (C U A). Also note that, as described above, JOIN is not a fundamental relational
algebra operator. It can be derived from other operators as follows:

n .
cus_code, cus_Iname, cus_fname, cus_initial, cus_renew_date, agent_code, agent_areacode, agent_phone, agent_Iname, agent_ytd_sls

(o (customer x agent))

customer.agent_code = agent.agent_code

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 89

Another form of join, known as an equijoin, links tables on the basis of an equality con-
dition that compares specified columns of each table. The outcome of the equijoin does
not eliminate duplicate columns, and the condition or criterion used to join the tables
must be explicitly defined. In fact, the result of an equijoin looks just like the outcome
shown in Figure 3.12 for Step 2 of a natural join. The equijoin takes its name from the
equality comparison operator (=) used in the condition. If any other comparison opera-
tor is used, the join is called a theta join.

Note

In formal terms, theta join is considered an extension of natural join. Theta join is denoted
by adding a theta subscript after the JOIN symbol: .. Equijoin is then a special type of
theta join.

Each of the preceding joins is often classified as an inner join. An inner join only
returns matched records from the tables that are being joined. In an outer join, the
matched pairs would be retained, and any unmatched values in the other table would be
left null. It is an easy mistake to think that an outer join is the opposite of an inner join.
However, it is more accurate to think of an outer join as an “inner join plus” The outer
join still returns all of the matched records that the inner join returns, plus it returns the
unmatched records from one of the tables. More specifically, if an outer join is produced
for tables CUSTOMER and AGENT, two scenarios are possible:

« Aleft outer join yields all of the rows in the CUSTOMER table, including those that
do not have a matching value in the AGENT table. An example of such a join is shown
in Figure 3.14.

FIGURE 3.14 LEFT OUTER JOIN

CUS_CODE [CUS_LNAME [CUS_ZIF | CUSTOMER.AGENT_CODE [AGENT. AGENT_CODE | AGENT_PHONE
1217762 Adares 32145 125 125 £152439007
1321242 Rodriguez 37134 125 125 £152439557
1312243 Rakowski 34129 167 167 B153426778
1132445 Walker 32145 231 231 5152431124
1657399 Wanloo 32145 231 231 £152431124
1542311 Srnithsan 37134 421

« A right outer join yields all of the rows in the AGENT table, including those that
do not have matching values in the CUSTOMER table. An example of such a join is
shown in Figure 3.15.

FIGURE 3.15 RIGHT OUTER JOIN

CUS_CODE| cUS_LMAME | CUS_ZIP | CUSTOMER. AGENT_CODE [AGENT AGENT_CODE [AGENT_PHONE
1217782 Adares 32145 125 125 5152439857
1321242 Rodriguez 37134 125 125 5152439857
1312243 Rakowski 34129 167 167 5153426778
1132445 Walker 32145 231 231 5152431124
1657393 Warloo 32145 231 231 152431124

333 9041234445

Outer joins are especially useful when you are trying to determine what values in
related tables cause referential integrity problems. Such problems are created when foreign
key values do not match the primary key values in the related table(s). In fact, if you are
asked to convert large spreadsheets or other “nondatabase” data into relational database

theta join

A join operator that
links tables using an
inequality comparison
operator (<, >, <=, >=) in
the join condition.
inner join

A join operation in
which only rows that
meet a given criterion
are selected. The join
criterion can be an
equality condition
(natural join or equijoin)
or an inequality
condition (theta join).
The inner join is the
most commonly used
type of join. Contrast
with outer join.

outer join

A relational algebra join
operation that produces
a table in which all
unmatched pairs are
retained; unmatched
values in the related
table are left null.
Contrast with inner join.
See also left outer join
and right outer join.

left outer join

In a pair of tables to be
joined, a join that yields
all the rows in the left
table, including those
that have no matching
values in the other table.
For example, a left outer
join of CUSTOMER with
AGENT will yield all of
the CUSTOMER rows,
including the ones that
do not have a matching
AGENT row. See also outer
Jjoin and right outer join.

right outer join

In a pair of tables to be
joined, a join that yields
all of the rows in the right
table, including the ones
with no matching values
in the other table. For
example, a right outer
join of CUSTOMER with
AGENT will yield all of the
AGENT rows, including
the ones that do not have
a matching CUSTOMER
row. See also feft outer join
and outer join.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90 Part2 Design Concepts

Note

tables, you will discover that the outer joins save you vast amounts of time and uncounted
headaches when you encounter referential integrity errors after the conversions.

You may wonder why the outer joins are labeled “left” and “right” The labels refer to
the order in which the tables are listed in the SQL command. Chapter 8 explores such
joins in more detail.

Outer join is also an extension of JOIN. Outer joins are the application of JOIN, DIFFERENCE,
UNION, and PRODUCT. A JOIN returns the matched tuples, DIFFERENCE finds the tuples
in one table that have values in the common attribute that do not appear in the com-
mon attribute of the other relation, these unmatched tuples are combined with NULL val-
ues through a PRODUCT, and then a UNION combines these results into a single relation.
Clearly, a defined outer join is a great simplification! Left and right outer joins are denoted

by the symbols ¢ and ¢, respectively.

DIVIDE

In relational algebra, an
operator that answers
queries about one set of
data being associated
with all values of data in
another set of data.

Divide The DIVIDE operator is used to answer questions about one set of data being
associated with all values of data in another set of data. The DIVIDE operation uses one
2-column table (Table 1) as the dividend and one single-column table (Table 2) as the
divisor. For example, Figure 3.16 shows a list of customers and the products purchased
in Table 1 on the left. Table 2 in the center contains a set of products that are of interest to
the users. A DIVIDE operation can be used to determine which customers, if any, pur-
chased every product shown in Table 2. In the figure, the dividend contains the P_CODE
and CUS_CODE columns. The divisor contains the P_ CODE column. The tables must
have a common column—in this case, the P_CODE column. The output of the DIVIDE
operation on the right is a single column that contains all values from the second column
of the dividend (CUS_CODE) that are associated with every row in the divisor.

Using the example shown in Figure 3.16, note the following:

FIGURE 3.16 DIVIDE

o — i ["cus_cope |
e T DIVIDE P_CODE yields CLJS_cc1)E)DE30
P o 123458

I0AEC 10031 234567 12550
. fz) 567890

=R 12350

e 10240

FMELT 1w

S {IEEN]

2HEET 12551

EETE 10921

HEETE V1)

ZHEEE 12550

4EETER 1530,

ETEEC 10500

SEIEES 1113

(EEFERD 12550,

E7ESC! 11521

CFLEC 1340

BB 154)

« Table 1 is “divided” by Table 2 to produce Table 3. Tables 1 and 2 both contain the
P_CODE column but do not share the CUS_CODE column.

« Tobeincluded in the resulting Table 3, a value in the unshared column (CUS_CODE)
must be associated with every value in Table 2.

« The only customers associated with all of products 123456, 234567, and 567890 are
customers 10030 and 12550.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 91

Note

The DIVIDE operator is denoted by the division symbol +. Given two relations, R and S, the
DIVISION of them would be written: r =+ s.

3-5 The Data Dictionary and the System Catalog

The data dictionary provides a detailed description of all tables in the database created
by the user and designer. Thus, the data dictionary contains at least all of the attribute
names and characteristics for each table in the system. In short, the data dictionary con-
tains metadata—data about data. Using the small database presented in Figure 3.3, you
might picture its data dictionary as shown in Table 3.6.

Note

The data dictionary in Table 3.6 is an example of the human view of the entities, attributes,
and relationships. The purpose of this data dictionary is to ensure that all members of
database design and implementation teams use the same table and attribute names and
characteristics. The DBMS's internally stored data dictionary contains additional informa-
tion about relationship types, entity and referential integrity checks and enforcement, and
index types and components. This additional information is generated during the data-
base implementation stage.

The data dictionary is sometimes described as “the database designer’s database”
because it records the design decisions about tables and their structures.

Like the data dictionary, the system catalog contains metadata. The system catalog
can be described as a detailed system data dictionary that describes all objects within
the database, including data about table names, table’s creator and creation date, num-
ber of columns in each table, data type corresponding to each column, index filenames,
index creators, authorized users, and access privileges. Because the system catalog con-
tains all required data dictionary information, the terms system catalog and data dic-
tionary are often used interchangeably. In fact, current relational database software
generally provides only a system catalog, from which the designer’s data dictionary
information may be derived. The system catalog is actually a system-created database
whose tables store the user/designer-created database characteristics and contents.
Therefore, the system catalog tables can be queried just like any user/designer-created
table.

In effect, the system catalog automatically produces database documenta-
tion. As new tables are added to the database, that documentation also allows the
RDBMS to check for and eliminate homonyms and synonyms. In general terms,
homonyms are similar-sounding words with different meanings, such as boar and
bore, or a word with different meanings, such as fair (which means “just” in some
contexts and “festival” in others). In a database context, the word homonym indi-
cates the use of the same name to label different attributes. For example, you might
use C_NAME to label a customer name attribute in a CUSTOMER table and use
C_NAME to label a consultant name attribute in a CONSULTANT table. To lessen
confusion, you should avoid database homonyms; the data dictionary is very use-
ful in this regard.

data dictionary

A DBMS component
that stores metadata—
data about data. Thus,
the data dictionary
contains the data
definition as well as
their characteristics
and relationships. A
data dictionary may
also include data that
are external to the
DBMS. Also known as
an information resource
dictionary. See also
active data dictionary,
metadata, and passive
data dictionary.

system catalog

A detailed system data
dictionary that describes
all objects in a database.

homonym

The use of the same
name to label different
attributes. Homonyms
generally should be
avoided. Some relational
software automatically
checks for homonyms
and either alerts the
user to their existence or
automatically makes the
appropriate adjustments.
See also synonym.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92 Part2 Design Concepts

‘paubije-13| se UMoys a1e elep Jaideieyd ‘'ssWeu ayl 2101s 0} pasn aq Aew siaideieyd gz 03 dn 1eyl bunesipul “(07)4YHIHUVA

Se pauyap aJe SaWeu 1siY JSWOISND 3y} ‘210j949Y] ‘Yyibua| piepuels e 0} WIOJUOD J0U Op SSWEeU ‘puey Jaylo ayl uQ (€)4vYHD se
pauyap si 2dA} eyep apod eale ay3 ‘a10j949Y] sUBIP 921y} Jo pasodwod sAemje a1e SIPOD eale Y} ‘OS|y “elep Ja1deieyd se palols
A3ua1da 3sow aJe A3y ‘Ajjes13awiyilie pasn Jou dJe sap0d eale 9snedaq Ing ‘6—0 sHBIP Jo pasodwod skem|e a1e sapod eale suoyds|a

210N
"2dA3 e18p ADNIFHYND 10 AANOW € JO 3sn 3y3 ywiad SNaay
Swos ‘ade|d [ewdap 9y} Jo 1Ybu ay3 03 s1BIp om) bulpn|dul ‘s3ibip auiu 01 dn Yyiim sisquunu A31d3ds 03 pasn si (z'6) YIGINNN "eiep dUswWnN = 4IGWNN
(s1912R4RUD 000'T — 1) B1eP Y1bUa| J93dkIRYD S|CRlIRA = YYHDYVA
(s1912e1RYD GGT - |) €lep Y1bua| Jd)deIeyD PaxId = dVHD
Aoy Alewid = Md
A3y ubiai104 = NE
66'666'666'6 | ('6)4IGNNN | S9|es d1ep-0)-1eak Juaby S1S dlA IN3IDV
A XXXXXXXX | (02)HVHDHVA dweu jse| yuaby JWYNT LNIDV
Jagwinu
A 6666-666 (8)4YHD auoyda|a} Juaby INOHd INIDV
A 666 (E)dVHD 9po> eale Jusby 3A0DVY3IYY LNIDV
Ad A 666 (E)4VYHD 9poDd Jusby 340D IN3IDY IN3IDV
1INIDV ME 666 (E)4VYHD 9p0d Juaby 3A0D IN3IDY
9)ep |[emaual
ARAA-www-pp J1va 2duUeINSUl JBWO0ISND J1Va MIANIYSND
X (L)4VHD [enriul Jswoisn) TVILINITSND
A XXXXXXXX | (02)HVHDHVA SWleu 3siy Jswoisn)y JWVYN4 SND
A XXXXXXXX | (02)HVHDHUVA Suleu jse| Jswoisn) JWVYNT SND
Ad A | 66666—-0000L 66666 (9)4VHD | 9PO331unodde JaWolsn) 3d0oD SnD 43N0LSND
4O Nd . 7Y YIWHO d 0 v did 11V v gy

AYVYNOILDIA V1VA ATdINVYS V

9t 319Vl

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 93

In a database context, a synonym is the opposite of a homonym, and indicates the use
of different names to describe the same attribute. For example, car and auto refer to the
same object. Synonyms must be avoided whenever possible.

3-6 Relationships within the Relational
Database

You already know that relationships are classified as one-to-one (1:1), one-to-many
(1:M), and many-to-many (M:N or M:M). This section explores those relationships fur-
ther to help you apply them properly when you start developing database designs. This
section focuses on the following points:

 The 1:M relationship is the relational modeling ideal. Therefore, this relationship type
should be the norm in any relational database design.

o The 1:1 relationship should be rare in any relational database design.

o M:N relationships cannot be implemented as such in the relational model. Later in
this section, you will see how any M:N relationship can be changed into two 1:M
relationships.

3-6a The 1:M Relationship

The 1:M relationship is the norm for relational databases. To see how such a relationship
is modeled and implemented, consider the PAINTER and PAINTING example shown
in Figure 3.17.

FIGURE 3.17 THE 1:M RELATIONSHIP BETWEEN PAINTER AND PAINTING

PAINTER PAINTING
yy paints

Compare the data model in Figure 3.17 with its implementation in Figure 3.18.
As you examine the PAINTER and PAINTING table contents in Figure 3.18, note the
following features:

« Each painting was created by one and only one painter, but each painter could have
created many paintings. Note that painter 123 (Georgette P. Ross) has three works
stored in the PAINTING table.

o There is only one row in the PAINTER table for any given row in the PAINTING
table, but there may be many rows in the PAINTING table for any given row in the
PAINTER table. synonym
The use of different
names to identify the
N Ote same object, such as an
entity, an attribute, or a
relationship; synonyms

The one-to-many (1:M) relationship is easily implemented in the relational model by put- should generally be
ting the primary key of the “1” side in the table of the “many” side as a foreign key. avoided. See also
homonym.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94 Part2 Design Concepts

FIGURE 3.18 THE IMPLEMENTED 1:M RELATIONSHIP BETWEEN PAINTER AND PAINTING

Table name: PAINTER

Primary key: PAINTER_NUM Database name: Ch03_Museum
Foreign key: none

PAINTER_fLIM | PAIMNTER_LWAKME | PAINTER_FRAME | PAINTER_IMITIAL |

123 Roszs Geargette P

126 | tera Jullic &

Table name: PAINTING
Primary key: PAINTING_NUM
Foreign key: PAINTER_NUM

PAIMTIMG UM | PAIMTIMNG _TITLE PAIMTER_TLIRA
1338 Dawn Thunder 1 27—
1339 Yanila Rozes To Mowhere | 27—
1340 Tired Flounders 126
1341 | Hasty Exit 1 27 —
1342 Plaztic Paradize 126

The 1:M relationship is found in any database environment. Students in a typical
college or university will discover that each COURSE can generate many CLASSes but
that each CLASS refers to only one COURSE. For example, an Accounting II course
might yield two classes: one offered on Monday, Wednesday, and Friday (MWF) from
10:00 a.m. to 10:50 a.m., and one offered on Thursday (Th) from 6:00 p.m. to 8:40 p.m.
Therefore, the 1:M relationship between COURSE and CLASS might be described this
way:

o Each COURSE can have many CLASSes, but each CLASS references only one

COURSE.

o There will be only one row in the COURSE table for any given row in the CLASS table,
but there can be many rows in the CLASS table for any given row in the COURSE
table.

Figure 3.19 maps the ERM (entity relationship model) for the 1:M relationship
between COURSE and CLASS.

FIGURE 3.19 THE 1:M RELATIONSHIP BETWEEN COURSE AND CLASS

has

The 1:M relationship between COURSE and CLASS is further illustrated in
Figure 3.20.

Using Figure 3.20, take a minute to review some important terminology. Note that
CLASS_CODE in the CLASS table uniquely identifies each row. Therefore, CLASS_
CODE has been chosen to be the primary key. However, the combination CRS_CODE
and CLASS_SECTION will also uniquely identify each row in the class table. In other

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 95

FIGURE 3.20 THE IMPLEMENTED 1:M RELATIONSHIP BETWEEN COURSE AND CLASS

Table name: COURSE

Primary key: CRS_CODE Database name: Ch03_TinyCollege
Foreign key: none
CRS_CODE | DEPT_CODE | CRE_DESCRIPTION CR=_CREDIT |
ACCT-211 ACCT Accounting | 3
ACCT-212 ACCT Accourting Il 3
CI=-220 Cls Intra. to Microcompting 3
Cl=-420 Cls Databasze Design and Implementation 4
Gihd-261 5 Intro. to Statistics 3
G-362 Cls Statistical Applications 4

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

CLASS _CODE | CRE_CODE | CLASS _SECTION CLASS_TIME CLASES _ROOM PROF MUK
10012 ACCT-211 1 WAF 8:00-8:50am. | BUSENM 103
10013 ACCT-211 2 WIAF 9:00-8:50am. | BUS200 103
10014 ACCT-211 3 TTh 2:30-3:43 p.m. BUS252 342
10015 ACCT-212 1 WOAF 10:00-10:50 a.m. | BUSE11 30
10018 ACCT-212 2 Th 6:00-3:40 p.m. BUS252 30
10017 CIs-220 1 WIAF 9:00-8:50am. |KLRZ09 228
10018 CIs-220 2 WIAF 9:00-8:50am. | KLRZ11 114
10019 CIs-220 3 WIAF 10:00-10:50 a.m. | KLREZ09 228
10020 Cls-420 1 W E00-5:40 pm. KLR209 162
10021 G- 261 1 WAF 8:00-8:50am. |KLRZ00 114
10022 G- 261 2 TTh 1:00-215 pm. KLR200 114
10023 Cih-362 1 WIAF 11:00-11:50 a.m. | KLRZ00 162
10024 Gihd-362 2 TTh 2:30-3:45 pm. KLR200 162

words, the composite key composed of CRS_CODE and CLASS_SECTION is a candidate
key. Any candidate key must have the not-null and unique constraints enforced. (You will
see how this is done when you learn SQL in Chapter 7.)

For example, note in Figure 3.18 that the PAINTER table’s primary key, PAINTER_
NUM, is included in the PAINTING table as a foreign key. Similarly, in Figure 3.20, the
COURSE table’s primary key, CRS_CODE, is included in the CLASS table as a foreign
key.

3-6b The 1:1 Relationship

As the 1:1 label implies, one entity in a 1:1 relationship can be related to only one other
entity, and vice versa. For example, one department chair—a professor—can chair only
one department, and one department can have only one department chair. The entities
PROFESSOR and DEPARTMENT thus exhibit a 1:1 relationship. (You might argue that
not all professors chair a department and professors cannot be required to chair a depart-
ment. That is, the relationship between the two entities is optional. However, at this stage
of the discussion, you should focus your attention on the basic 1:1 relationship. Optional
relationships will be addressed in Chapter 4.) The basic 1:1 relationship is modeled in
Figure 3.21, and its implementation is shown in Figure 3.22.

FIGURE 3.21 THE 1:1 RELATIONSHIP BETWEEN PROFESSOR
AND DEPARTMENT

PROFESSOR DEFARTMENT

gy chairs
LLJ LI

96 Part2 Design Concepts

As you examine the tables in Figure 3.22, note several important features:

Each professor is a Tiny College employee. Therefore, the professor identification
is through the EMP_NUM. (However, note that not all employees are professors—
there’s another optional relationship.)

The 1:1 “PROFESSOR chairs DEPARTMENT?” relationship is implemented by
having the EMP_NUM foreign key in the DEPARTMENT table. Note that the
1:1 relationship is treated as a special case of the 1:M relationship in which the
“many” side is restricted to a single occurrence. In this case, DEPARTMENT con-
tains the EMP_NUM as a foreign key to indicate that it is the department that has
a chair.

FIGURE 3.22 THE IMPLEMENTED 1:1 RELATIONSHIP BETWEEN PROFESSOR AND DEPARTMENT

Table name: PROFESSOR Database name: Ch03_TinyCollege
Primary key: EMP_NUM

Foreign key: DEPT_CODE
EMP_MUM | DEPT_CODE | PROF_OFFICE | PROF_EXTENSION | PROF_HIGH_DEGREE |

103 HIST DRE 156 B783 Ph.D.
104 | EMG DRE 102 5561 [

105 ACCT KLR 2280 S6ES Ph.D.
106 MHTMGT KLR 126 3894 Ph.D.
110 BlOL ALK 160 3412 Ph.D.
114 ACCT KLR 211 4436 Ph.D.
1535 MATH AAH 20 4440 Ph.D.
160 EMG DRE 102 2248 Ph.D.
162 CIS KLR 203E 2358 Ph.D.
181 MHTMGT KLR 4098 4016 DB,
185 PEYCH MM 29T 3550 Ph.D.
209 CIs KLR 333 3421 Ph.D.
226 s KLR 300 3000 Ph.D.
287 MATH AAk 194 1145 Ph.D.
299 ECOMSFIR KLR 284 2851 Ph.D.
301 ACCT KLR 244 4653 Ph.D.
335 EMG DRE 203 2000 Ph.D.
F42 | S0 BBG 208 2514 Ph.D.
357 BlOL AR 230 SEES Ph.D.
401 HIST DRE 156 E7E3 fl s,

425 ECOMIFIN KLR 254 2851 [l[=EY
435 ART BBG 185 2278 Ph.D.

The

1:M DEPARTMENT employs PROFESSOR relationship is implemented through

the placement of the DEPT_CODE foreign key in the PROFESSOR table.

The 1:1 PROFESSOR chairs DEPARTMENT relationship

Table name: DEPARTMENT is implemented through the placement of the
Primary key: DEPT_CODE EMP_N UM foreign key in the DEPARTMENT table.
Foreign key: EMP_NUM

| pEPT_corE | DEPT_MAME | SCHOOL_CODE | EMP_MUM | DEPT_ADDRESS | DEPT_EXTEMSIOM |

ACCT Accounting BU= 114 KLR 211, Box 52 319

ART Fine Atz A& 435 BB 185 Box 128 2273

BloL Biclogy A& 387 ALK 230, Box 415 4117

Cls Computer Info. Systems BUS 209 LR 333, Box 56 3245

ECOMFIM Economicz/Finance BU= 299 KLR 254, Box B3 26

EMG Englizh A& 160 DRE 102, Box 223 1004

HIST Histary A& 103 DRE 156, Box 254 1867

WATH Mathematics AESC] 287 ALK 194 Box 422 4234

METMGT MarketingManagement BUS 106 KLR 126, Box 55 3342

PEYCH Paychology AESC] 185 ALK 297 Box 438 4110

S0 Sociology AESC] 342 BBG 208 Box 132 2005

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).

Editorial review has deemed that any suppressed

content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 97

« Also note that the PROFESSOR table contains the DEPT_CODE foreign key to
implement the 1:M “DEPARTMENT employs PROFESSOR” relationship. This is a
good example of how two entities can participate in two (or even more) relationships
simultaneously.

The preceding “PROFESSOR chairs DEPARTMENT” example illustrates a proper 1:1
relationship. In fact, the use of a 1:1 relationship ensures that two entity sets are not placed
in the same table when they should not be. However, the existence of a 1:1 relationship
sometimes means that the entity components were not defined properly. It could indicate
that the two entities actually belong in the same table!

Although 1:1 relationships should be rare, certain conditions absolutely require their
use. In Chapter 5, Advanced Data Modeling, you will explore a concept called a general-
ization hierarchy, which is a powerful tool for improving database designs under specific
conditions to avoid a proliferation of nulls. One characteristic of generalization hierar-
chies is that they are implemented as 1:1 relationships.

3-6¢ The M:N Relationship

A many-to-many (M:N) relationship is not supported directly in the relational environ-
ment. However, M:N relationships can be implemented by creating a new entity in 1:M
relationships with the original entities.

To explore the many-to-many relationship, consider a typical college environment.
The ER model in Figure 3.23 shows this M:N relationship.

FIGURE 3.23 THE ERM’S M:N RELATIONSHIP BETWEEN STUDENT
AND CLASS

BTUDENT

CLASE
has

g E— |

Note the features of the ERM in Figure 3.23.

o Each CLASS can have many STUDENTs, and each STUDENT can take many
CLASSes.

o There can be many rows in the CLASS table for any given row in the STUDENT table,
and there can be many rows in the STUDENT table for any given row in the CLASS
table.

To examine the M:N relationship more closely, imagine a small college with two students,
each of whom takes three classes. Table 3.7 shows the enrollment data for the two students.

Given such a data relationship and the sample data in Table 3.7, you could wrongly
assume that you could implement this M:N relationship simply by adding a foreign key
in the “many” side of the relationship that points to the primary key of the related table,
as shown in Figure 3.24.

However, the M:N relationship should not be implemented as shown in Figure 3.24
for two good reasons:

 The tables create many redundancies. For example, note that the STU_NUM values
occur many times in the STUDENT table. In a real-world situation, additional stu-
dent attributes such as address, classification, major, and home phone would also
be contained in the STUDENT table, and each of those attribute values would be
repeated in each of the records shown here. Similarly, the CLASS table contains much

Online
Content ¥

If you open the Ch03_
TinyCollege database
at www.cengagebrain.
com, you will see that
the STUDENT and
CLASS entities still use
PROF_NUM as their
foreign key. PROF_
NUM and EMP_NUM
are labels for the same
attribute, which is an
example of the use of
synonyms—that s,
different names for the
same attribute. These
synonyms will be elim-
inated in future chap-
ters as the Tiny College
database continues to
be improved.

Online
Content ¥

If you look at the
Ch03_AviaCo database
at www.cengagebrain.
com, you will see the
implementation of the
1:1 PILOT to EMPLOYEE
relationship. This rela-
tionship is based on a
generalization hierar-
chy, which you will learn
about in Chapter 5.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98 Part2 Design Concepts

TABLE 3.7

SAMPLE STUDENT ENROLLMENT DATA

STUDENT’S LAST NAME SELECTED CLASSES

Bowser Accounting 1, ACCT-211, code 10014 Intro to Microcomputing, CIS-220,
code 10018 Intro to Statistics, QM-261, code 10021

Smithson Accounting 1, ACCT-211, code 10014 Intro to Microcomputing, CIS-220,
code 10018 Intro to Statistics, QM-261, code 10021

FIGURE 3.24 THE WRONG IMPLEMENTATION OF THE M:N RELATIONSHIP BETWEEN STUDENT

AND CLASS

Table name: STUDENT

Primary key: STU_NUM

Database name: Ch03_CollegeTry

Foreign key: none

STU_MUM | STU_LNAME | CLASS_CODE
321452 Bowser 10014
321452 Bowser 10015
321452 Bowser 10021
F24257 | Smithson 10014
F24257 | Smithson 10015
F24257 | Smithson 10021

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: STU_NUM

composite entity
An entity designed

to transform an Mi:N
relationship into two
1:M relationships. The
composite entity’s
primary key comprises
at least the primary keys
of the entities that it
connects. Also known
as a bridge entity or
associative entity. See
also linking table.

bridge entity
See composite entity.

associative entity
See composite entity.

CLASS_CODE | STU_MURM | CRS_CODE | CLASS_SECTION CLASS_TIME CLASS_ROOM | PROF_MUK

10014 321452| ACCT-211 3 TTh 2:30-3:45 pm. | BUS232 342
10014 324257 | ACCT-211 3 TTh 2:30-3:45 pm. | BUS232 342
10015 321452| CI5-220 2 WIAF 9:00-8:50 am. KLRE211 114
10015 F24257 | CI5-220 2 WAAF 9:00-8:50 am. | KLR211 114
10021 321452| Gha-261 1 WA 5:00-5:50 am. | KLR200 114
10021 F24257 | Gha-261 1 WAAF 5:00-5:50 am. | KLR200 114

duplication: each student taking the class generates a CLASS record. The problem
would be even worse if the CLASS table included such attributes as credit hours and
course description. Those redundancies lead to the anomalies discussed in Chapter 1.

 Given the structure and contents of the two tables, the relational operations become
very complex and are likely to lead to system efficiency errors and output errors.

Fortunately, the problems inherent in the many-to-many relationship can easily be
avoided by creating a composite entity (also referred to as a bridge entity or an
associative entity). Because such a table is used to link the tables that were origi-
nally related in an M:N relationship, the composite entity structure includes—as for-
eign keys—at least the primary keys of the tables that are to be linked. The database
designer has two main options when defining a composite table’s primary key: use the
combination of those foreign keys or create a new primary key.

Remember that each entity in the ERM is represented by a table. Therefore, you
can create the composite ENROLL table shown in Figure 3.25 to link the tables
CLASS and STUDENT. In this example, the ENROLL table’s primary key is the
combination of its foreign keys CLASS_CODE and STU_NUM. However, the
designer could have decided to create a single-attribute new primary key such as
ENROLL_LINE, using a different line value to identify each ENROLL table row
uniquely. (Microsoft Access users might use the Autonumber data type to generate
such line values automatically.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 99

FIGURE 3.25 CONVERTING THE M:N RELATIONSHIP INTO TWO 1:M RELATIONSHIPS

Table name: STUDENT
Primary key: STU_NUM Database name: Ch03_CollegeTry2
Foreign key: none
| STU_NUM | STU_LNAME |
321432 Bowvger
324237 | Smithzon

Table name: ENROLL
Primary key: CLASS_CODE + STU_NUM
Foreign key: CLASS_CODE, STU_NUM

CLASS_CODE | STU_NUM | ENROLL_GRADE |
10014 321452/C
10014 324257 B
10018 321452 A,
10018 324257 B
10021 321452|C
10021 324257 |C

Table name: CLASS
Primary key: CLASS_CODE
Foreign key: CRS_CODE

[CLASS_CODE | CRS_CODE | CLASS_SECTION | CLASS_TME | CLASS_ROOM | FROF_NUM

10014 ACCT-211 3 TTh 2:30-3:45 pm. BUS252 342
100185 CI5-220 2 WIAF 9:00-8:50 am. KLR211 114
10021 GIhd-261 1 WA G:00-5:50 am. KLR200 114

Because the ENROLL table in Figure 3.25 links two tables, STUDENT and CLASS,
it is also called a linking table. In other words, a linking table is the implementation
of a composite entity.

Note

In addition to the linking attributes, the composite ENROLL table can also contain such
relevant attributes as the grade earned in the course. In fact, a composite table can contain
any number of attributes that the designer wants to track. Keep in mind that the compos-
ite entity, although implemented as an actual table, is conceptually a logical entity that was
created as a means to an end: to eliminate the potential for multiple redundancies in the
original M:N relationship.

The ENROLL table shown in Figure 3.25 yields the required M:N to 1:M con-
version. Observe that the composite entity represented by the ENROLL table must
contain at least the primary keys of the CLASS and STUDENT tables (CLASS_
CODE and STU_NUM, respectively) for which it serves as a connector. Also note
that the STUDENT and CLASS tables now contain only one row per entity. The
ENROLL table contains multiple occurrences of the foreign key values, but those
controlled redundancies are incapable of producing anomalies as long as referen-
tial integrity is enforced. Additional attributes may be assigned as needed. In this
case, ENROLL_GRADE is selected to satisfy a reporting requirement. Also note
that ENROLL_GRADE is fully dependent on the composite primary key. Naturally,
the conversion is reflected in the ERM, too. The revised relationship is shown in linking table
Figure 3.26. In the relational model,
a table that implements

an M:M relationship. See
also composite entity.

As you examine Figure 3.26, note that the composite entity named ENROLL rep-
resents the linking table between STUDENT and CLASS.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100 Part2 Design Concepts

FIGURE 3.26 CHANGING THE M:N RELATIONSHIPS TO TWO
1:M RELATIONSHIPS

The 1:M relationship between COURSE and CLASS was first illustrated in Figure 3.19
and Figure 3.20. You can increase the amount of available information even as you control
the database’s redundancies. Thus, Figure 3.27 shows the expanded ERM, including the
1:M relationship between COURSE and CLASS shown in Figure 3.19. Note that the model
can handle multiple sections of a CLASS while controlling redundancies by making sure
that all of the COURSE data common to each CLASS are kept in the COURSE table.

FIGURE 3.27 THE EXPANDED ER MODEL

regist S S {R R |

The relational diagram that corresponds to the ERM in Figure 3.27 is shown in
Figure 3.28.

FIGURE 3.28 THE RELATIONAL DIAGRAM FOR THE CHO3_TINYCOLLEGE DATABASE

" STUDENT

] EMROLL COURSE

| @sumnum L_ ¥ CLASS CODE | ¥ CRS_CODE
STU_LHAME 2 9 sTunum DEFT_CODE
5TU_FMNAME EMRULL_LHADE CRS_DESCRIPTION
STULINIT CRS_CREDIT
5TU DOB CLASS
5TU_HRS L' ¥ ciass CODE
STU_CLASS CRS CODE
STU GRA CLASS_SECTION
5TU TRAMSFER CLASS TIME
DEPT_CODE CLASS ROOM
STU_PHONE PROF NUM
PRO= UM

The ERM will be examined in greater detail in Chapter 4 to show you how it is used
to design more complex databases. The ERM will also be used as the basis for developing
and implementing a realistic database design of a university computer lab in Appendixes
B and C. These appendixes are available at www.cengagebrain.com.

Chapter 3 The Relational Database Model 101

3-7 Data Redundancy Revisited

In Chapter 1, you learned that data redundancy leads to data anomalies, which can
destroy the effectiveness of the database. You also learned that the relational database
makes it possible to control data redundancies by using common attributes that are
shared by tables, called foreign keys.

The proper use of foreign keys is crucial to controlling data redundancy, although
they do not totally eliminate the problem because the foreign key values can be repeated
many times. However, the proper use of foreign keys minimizes data redundancies and
the chances that destructive data anomalies will develop.

Note

The real test of redundancy is not how many copies of a given attribute are stored, but
whether the elimination of an attribute will eliminate information. Therefore, if you delete
an attribute and the original information can still be generated through relational alge-
bra, the inclusion of that attribute would be redundant. Given that view of redundancy,
proper foreign keys are clearly not redundant in spite of their multiple occurrences in a
table. However, even when you use this less restrictive view of redundancy, keep in mind
that controlled redundancies are often designed as part of the system to ensure transaction
speed and/or information requirements.

You will learn in Chapter 4 that database designers must reconcile three often contra-
dictory requirements: design elegance, processing speed, and information requirements.
Also, you will learn in Chapter 13, Business Intelligence and Data Warehouses, that
proper data warehousing design requires carefully defined and controlled data redun-
dancies to function properly. Regardless of how you describe data redundancies, the
potential for damage is limited by proper implementation and careful control.

As important as it is to control data redundancy, sometimes the level of data redun-
dancy must actually be increased to make the database serve crucial information pur-
poses. You will learn about such redundancies in Chapter 13. Also, data redundancies
sometimes seem to exist to preserve the historical accuracy of the data. For example,
consider a small invoicing system. The system includes the CUSTOMER, who may buy
one or more PRODUCTs, thus generating an INVOICE. Because a customer may buy
more than one product at a time, an invoice may contain several invoice LINEs, each
providing details about the purchased product. The PRODUCT table should contain the
product price to provide a consistent pricing input for each product that appears on the
invoice. The tables that are part of such a system are shown in Figure 3.29. The system’s
relational diagram is shown in Figure 3.30.

As you examine the tables and relationships in the two figures, note that you can
keep track of typical sales information. For example, by tracing the relationships
among the four tables, you discover that customer 10014 (Myron Orlando) bought
two items on March 8, 2016, that were written to invoice number 1001: one Houselite
chain saw with a 16-inch bar and three rat-tail files. In other words, trace the CUS_
CODE number 10014 in the CUSTOMER table to the matching CUS_CODE value
in the INVOICE table. Next, trace the INV_NUMBER 1001 to the first two rows
in the LINE table. Finally, match the two PROD_CODE values in LINE with the
PROD_CODE values in PRODUCT. Application software will be used to write the
correct bill by multiplying each invoice line item’s LINE_UNITS by its LINE_PRICE,
adding the results, and applying appropriate taxes. Later, other application software

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

102 Part2 Design Concepts

FIGURE 3.29 A SMALL INVOICING SYSTEM

Table name: CUSTOMER
Primary key: CUS_CODE Database name: Ch03_SaleCo

Foreign key: none

| CUS_CODEl CUS_LNAME | CUS_FNAMEl CUS_INITIAL | CUS_AREACODE | CUS_PHONE

10010 Ramas Alfred &, &15 Gi4-2573
10011 | Dunne Leona &8 713 §94-1235
10012 Smith Kathy W &15 04-2255
10013 Oloweski Paul F &15 84-2150
10014 Orlando Myron 613 2221672
10015 O'Brian Amy] 713 4423351
10016 Brovwen James <] 613 2971228
10017 willizms George 613 290-2556
10018 Farrizs Arin G 713 382-T85 Table name: LINE
10019 Smith lette K E15 2073500 .
Primary key: INV_NUMBER + LINE_ZNUMBER
Table name: INVOICE Foreign key: INV_NUMBER, PROD_CODE
Primary key: INV_NUMBER INY _WUMBER | LINE_WUMEER | PROD_CODE | LINE_UMITS | LINE_PRICE |
. 1001 11232100 1 159,98
Foreign key: CUS_CODE 1001 2| SRE-657UG 3 299
[_MUMBER: | CUS_CODE | INv_DATE | 1002 1/ QER-34256 2 1863
1001 10014| DEMar16 1003 1| ZZHrIz450 1 573
1003 2| SRE-B5TIUG 1 288
1002 10011 08-Mar-16 1003 300 278-48 1 1285
1003 10012 08-Mar-16 1004 1/001278-48 1 1285
1004 10011 | 09-Mar-16 1004 2 SRE-BSTUG 2 299

Table name: PRODUCT
Primary key: PROD_CODE

Foreign key: none

[PROD_CoDE | PROD_DESCRIPT [FROD_PRICE | PROD_CN_HAND [VEND_CODE
00M278-48 Claw hammer 1285 23 232
12321007 Houselte chain saw, 16-in. bar 189.99 4 235
QER-34256 Slecge hammer, 16-1b. head 18.63 3 231
SRE-B5TUG Rat-tail file 239 15 232
IZHM32450 Steeltape, 12-ft. length 679 a 235

FIGURE 3.30 THE RELATIONAL DIAGRAM FOR THE INVOICING SYSTEM

[customer IHVOICE LINE PRODUIET
¥ Cus_CODE 7 INV_NUMBER = 7 INV_NUM3ER 7 PROD_CODE
CUS_LNAME CUS_CODE ¥ LNE_NUMBER PROD_DESCRIPT
CU5_FNAME INV_DATE PROD_CODE PROD_PRICE
CUS_INTTIAL LINE_UNITS PROD_ON_HAND
CUS_AREACODE LINE_PRICE VEND_CODE
CUS_PHONE

might use the same technique to write sales reports that track and compare sales by
week, month, or year.

As you examine the sales transactions in Figure 3.29, you might reasonably suppose
that the product price billed to the customer is derived from the PRODUCT table
because the product data is stored there. But why does that same product price occur
again in the LINE table? Is that not a data redundancy? It certainly appears to be, but
this time, the apparent redundancy is crucial to the system’ success. Copying the prod-
uct price from the PRODUCT table to the LINE table maintains the historical accuracy
of the transactions. Suppose, for instance, that you fail to write the LINE_PRICE in the
LINE table and that you use the PROD_PRICE from the PRODUCT table to calculate
the sales revenue. Now suppose that the PRODUCT table’s PROD_PRICE changes, as
prices frequently do. This price change will be properly reflected in all subsequent sales
revenue calculations. However, the calculations of past sales revenues will also reflect
the new product price, which was not in effect when the transaction took place! As a

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 103

result, the revenue calculations for all past transactions will be incorrect, thus elim-
inating the possibility of making proper sales comparisons over time. On the other
hand, if the price data is copied from the PRODUCT table and stored with the transac-
tion in the LINE table, that price will always accurately reflect the transaction that took
place at that time. You will discover that such planned “redundancies” are common in
good database design.

Finally, you might wonder why the LINE_NUMBER attribute was used in the LINE
table in Figure 3.29. Wouldn't the combination of INV_NUMBER and PROD_CODE be
a sufficient composite primary key—and, therefore, isn’t the LINE_NUMBER redundant?
Yes, it is, but this redundancy is common practice on invoicing software that typically
generates such line numbers automatically. In this case, the redundancy is not necessary,
but given its automatic generation, the redundancy is not a source of anomalies. The
inclusion of LINE_ NUMBER also adds another benefit: the order of the retrieved invoic-
ing data will always match the order in which the data was entered. If product codes are
used as part of the primary key, indexing will arrange those product codes as soon as
the invoice is completed and the data is stored. You can imagine the potential confusion
when a customer calls and says, “The second item on my invoice has an incorrect price,”
and you are looking at an invoice whose lines show a different order from those on the
customer’s copy!

3-8 Indexes

Suppose you want to locate a book in a library. Does it make sense to look through
every book until you find the one you want? Of course not; you use the library’s cat-
alog, which is indexed by title, topic, and author. The index (in either a manual or
computer library catalog) points you to the book’s location, making retrieval a quick
and simple matter. An index is an orderly arrangement used to logically access rows
in a table.
Or, suppose you want to find a topic in this book, such as ER model. Does it make
sense to read through every page until you stumble across the topic? Of course not; it is
much simpler to go to the book’s index, look up the phrase ER model, and read the ref-
erences that point you to the appropriate page(s). In each case, an index is used to locate
a needed item quickly.
Indexes in the relational database environment work like the indexes described in
the preceding paragraphs. From a conceptual point of view, an index is composed of an
index key and a set of pointers. The index key is, in effect, the index’s reference point.
More formally, an index is an ordered arrangement of keys and pointers. Each key points
to the location of the data identified by the key.
For example, suppose you want to look up all of the paintings created by a given
painter in the Ch03_Museum database in Figure 3.18. Without an index, you must read
each row in the PAINTING table and see if the PAINTER_NUM matches the requested)
painter. However, if you index the PAINTER table and use the index key PAINTER _ 'A:d;;(ere eliyon
NUM, you merely need to look up the appropriate PAINTER_NUM in the index and index key values and
find the matching pointers. Conceptually speaking, the index would resemble the pre- row |D values (pointers).
sentation in Figure 3.31. Indexes are generally
As you examine Figure 3.31, note that the first PAINTER_NUM index key value (123) %Sgﬁtgﬁesgjgdrggizc;
is found in records 1, 2, and 4 of the PAINTING table. The second PAINTER_NUM Also known as an index
index key value (126) is found in records 3 and 5 of the PAINTING table. key.
DBMSs use indexes for many different purposes. You just learned that an index index key
can be used to retrieve data more efficiently, but indexes can also be used by a DBMS See index.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104 Part2 Design Concepts

FIGURE 3.31 COMPONENTS OF AN INDEX

PAINTING table index

-

PAINTING table

PAIMTIMG _MUR | PAIMTIMNG _TITLE PAIMTER:_MLIN

123 1,2, 4 1338 Dawn Thunder 123
1339 Yanilla Rozes To Mowhere 123

1340 Tire Flounders 126

126 3,5 1341 Hasty Exit 123
1342 Plaztic Paradize 126

V.

/

PAI.NTER_NUM
(index key) pointers to the
PAINTING
table rows

unique index

An index in which the
index key can have only
one associated pointer
value (row).

to retrieve data ordered by a specific attribute or attributes. For example, creating an
index on a customer’s last name will allow you to retrieve the customer data alphabet-
ically by the customer’s last name. Also, an index key can be composed of one or more
attributes. For example, in Figure 3.29, you can create an index on VEND_CODE and
PROD_CODE to retrieve all rows in the PRODUCT table ordered by vendor, and
within vendor, ordered by product.

Indexes play an important role in DBMSs for the implementation of primary keys.
When you define a table’s primary key, the DBMS automatically creates a unique index
on the primary key column(s) you declared. For example, in Figure 3.29, when you
declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS auto-
matically creates a unique index on that attribute. In a unique index, as its name implies,
the index key can have only one pointer value (row) associated with it. (The index in Fig-
ure 3.31 is not a unique index because the PAINTER_NUM has multiple pointer values
associated with it. For example, painter number 123 points to three rows—1, 2, and 4—in
the PAINTING table.)

A table can have many indexes, but each index is associated with only one table.
The index key can have multiple attributes (a composite index). Creating an index
is easy. You will learn in Chapter 7 that a simple SQL command produces any
required index.

3-9 Codd’s Relational Database Rules

In 1985, Dr. E. E Codd published a list of 12 rules to define a relational database
system.' He published the list out of concern that many vendors were marketing products
as “relational” even though those products did not meet minimum relational standards.
Dr. Codd’s list, shown in Table 3.8, is a frame of reference for what a truly relational
database should be. Bear in mind that even the dominant database vendors do not fully
support all 12 rules.

'Codd, E., “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” Computerworld,
October 14 and October 21, 1985.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 3.8

DR. CODD’S 12 RELATIONAL DATABASE RULES

RULE

RULE NAME

Chapter 3 The Relational Database Model 105

DESCRIPTION

1 Information All information in a relational database must be logically represented as
column values in rows within tables.

2 Guaranteed access Every value in a table is guaranteed to be accessible through a combination
of table name, primary key value, and column name.

3 Systematic treatment of nulls | Nulls must be represented and treated in a systematic way, independent of
data type.

4 Dynamic online catalog based | The metadata must be stored and managed as ordinary data—that is, in

on the relational model tables within the database; such data must be available to authorized users
using the standard database relational language.

5 Comprehensive data The relational database may support many languages; however, it must

sublanguage support one well-defined, declarative language as well as data definition,
view definition, data manipulation (interactive and by program), integrity
constraints, authorization, and transaction management (begin, commit,
and rollback).

6 View updating Any view that is theoretically updatable must be updatable through the
system.

7 High-level insert, update, and | The database must support set-level inserts, updates, and deletes.

delete

8 Physical data independence Application programs and ad hoc facilities are logically unaffected when
physical access methods or storage structures are changed.

9 Logical data independence Application programs and ad hoc facilities are logically unaffected when
changes are made to the table structures that preserve the original table
values (changing order of columns or inserting columns).

10 Integrity independence All relational integrity constraints must be definable in the relational
language and stored in the system catalog, not at the application level.

11 Distribution independence The end users and application programs are unaware of and unaffected by
the data location (distributed vs. local databases).

12 Nonsubversion If the system supports low-level access to the data, users must not be
allowed to bypass the integrity rules of the database.

13 Rule zero All preceding rules are based on the notion that to be considered
relational, a database must use its relational facilities exclusively for
management.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106 Part2 Design Concepts

Tables are the basic building blocks of a relational database. A grouping of related
entities, known as an entity set, is stored in a table. Conceptually speaking, the rela-
tional table is composed of intersecting rows (tuples) and columns. Each row rep-
resents a single entity, and each column represents the characteristics (attributes) of
the entities.

Keys are central to the use of relational tables. Keys define functional dependencies;
that is, other attributes are dependent on the key and can therefore be found if the key
value is known. A key can be classified as a superkey, a candidate key, a primary key,
a secondary key, or a foreign key.

Each table row must have a primary key. The primary key is an attribute or combina-
tion of attributes that uniquely identifies all remaining attributes found in any given
row. Because a primary key must be unique, no null values are allowed if entity integ-
rity is to be maintained.

Although tables are independent, they can be linked by common attributes.
Thus, the primary key of one table can appear as the foreign key in another
table to which it is linked. Referential integrity dictates that the foreign key
must contain values that match the primary key in the related table, or must
contain nulls.

The relational model supports several relational algebra functions, including SELECT,
PROJECT, JOIN, INTERSECT, UNION, DIFFERENCE, PRODUCT, and DIVIDE.
Understanding the basic mathematical forms of these functions gives a broader
understanding of the data manipulation options.

A relational database performs much of the data manipulation work behind the
scenes. For example, when you create a database, the RDBMS automatically produces
a structure to house a data dictionary for your database. Each time you create a new
table within the database, the RDBMS updates the data dictionary, thereby providing
the database documentation.

Once you know the basics of relational databases, you can concentrate on design.
Good design begins by identifying appropriate entities and their attributes and
then the relationships among the entities. Those relationships (1:1, 1:M, and
M:N) can be represented using ERDs. The use of ERDs allows you to create
and evaluate simple logical design. The 1:M relationship is most easily incorpo-
rated in a good design; just make sure that the primary key of the “1” is included
in the table of the “many.”

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 107

associative entity
attribute domain
bridge entity
candidate key
closure
composite entity
composite key
data dictionary
dependent
determinant
determination
DIFFERENCE
DIVIDE

domain

entity integrity
equijoin

flags

foreign key (FK)

full functional dependence
functional dependence
homonym

index

index key

inner join

INTERSECT

JOIN

join column(s)

key

key attribute

left outer join

linking table

natural join

null

outer join

predicate logic

primary key (PK)

Review Questions

% Pl
PRODUCT '

PROJECT

referential integrity

Online
Content

relational algebra Flashcards and crossword

relvar puzzles for key term practice
are available at

RIRICT www.cengagebrain.com.

right outer join

secondary key
SELECT

set theory
superkey
synonym

system catalog
theta join

tuple

UNION
union-compatible

unique index

1. What is the difference between a database and a table?

2. What does it mean to say that a database displays both entity integrity and
referential integrity?

3. Why are entity integrity and referential integrity important in a database?

4. What are the requirements that two relations must satisfy to be considered
union-compatible?

5. Which relational algebra operators can be applied to a pair of tables that are
not union-compatible?

6. Explain why the data dictionary is sometimes called “the database designer’s

database”

Online §
Content §

All of the databases used
in the questions and prob-
lems are available at www.
cengagebrain.com. The data-
base names match the
database names shown in
the figures.

7. A database user manually notes that “The file contains two hundred records, each
record containing nine fields” Use appropriate relational database terminology to

“translate” that statement.
Use Figure Q3.8 to answer Questions 8-12.

8. Using the STUDENT and PROFESSOR tables, illustrate the difference between a
natural join, an equijoin, and an outer join.

9. Create the table that would result from . (student).

10. Create the table that would result from 1

stu_code, dept_code

(student M professor).

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108 Part2 Design Concepts

11.
12.

Create the basic ERD for the database shown in Figure Q3.8.

Create the relational diagram for the database shown in Figure Q3.8.

FIGURE Q3.8 THE CHO3_COLLEGEQUE DATABASE TABLES

Database name: Ch03_CollegeQue
Table name: STUDENT

STU_CODE | FROF_CODE
100278
128569 2
512272 4
531235 2
531268
553427 1

Table name: PROFESSOR
| PROF_CODE | DEFT_CODE
12
2k
36
44

Use Figure Q3.13 to answer Questions 13-17.

FIGURE Q3.13 THE CHO3_VENDINGCO DATABASE TABLES

13.

14.

15.

16.

17.

Database name: Ch03_VendingCo

Table name: BOOTH Table name: MACHINE

BOOTH PRODUCT| BOOTH_PRICE MACHINE_PRODUCT | MACHINE_PRICE
Chips 156 Chips 1.25
Cala 125 Chocolate Bar 1
Energy Drink 2 Energy Drink 2

Write the relational algebra formula to apply a UNION relational operator to the
tables shown in Figure Q3.13.

Create the table that results from applying a UNION relational operator to the tables
shown in Figure Q3.13.

Write the relational algebra formula to apply an INTERSECT relational operator to
the tables shown in Figure Q3.13.

Create the table that results from applying an INTERSECT relational operator to the
tables shown in Figure Q3.13.

Using the tables in Figure Q3.13, create the table that results from MACHINE
DIFFERENCE BOOTH.

Use Figure Q3.18 to answer Question 18.

FIGURE Q3.18 THE CROW'S FOOT ERD FOR QUESTION 14

DRIVER | TRUCK |
drives

pt—<

During some time interval, a DRIVER can drive many TRUCKs
and any TRUCK can be driven by many DRIVERs

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 109

18. Suppose you have the ERD shown in Figure Q3.18. How would you convert this
model into an ERM that displays only 1:M relationships? (Make sure you create the

19.
20.

Use Figure Q3.21 to answer Question 21.

revised ERD.)

What are homonyms and synonyms, and why should they be avoided in database

design?

How would you implement a :M relationship in a database composed of two tables?

Give an example.

FIGURE Q3.21 THE CHO3_NOCOMP DATABASE EMPLOYEE TABLE

Table name: EMPLOYEE

Database name: Ch03_NoComp

EMP_MUM | EMP_LMAME | EMP_INITIAL | EMP_FMAME | DEPT_CODE | JOB_CCDE |

11234 | Frigdman H
11235 Clanski o
11241 | Fortein

11242 Cruazona J
11245 Smithzon B

11245 Washingtan &
11256 | McBride

11257 Kachinn o
112558 Smith W
11260 Ratula A

Rokert
Delbert
Juliette
aria
Bernard
Clets
Fandall
Melanie
illizm
Katring

MK TG
MKTG
INFS
EMG
INFS
EMGR
EMGR
MKTG
MKTG
INFS

12
12
o
9
-]
[
[
14
14
o

21. Identify and describe the components of the table shown in Figure Q3.21, using cor-
rect terminology. Use your knowledge of naming conventions to identify the table’s

probable foreign key(s).

Use the database shown in Figure Q3.22 to answer Questions 22-27.

FIGURE Q3.22 THE CHO3_THEATER DATABASE TABLES

Database name: Ch03_Theater

22.
23.
24.
25.
26.

27.

Table name: DIRECTOR

| pR_MUM | DIR_LMAME | DIR_DOE |

100 Broadywnesay 12-Jan-E5
101 Holywwoody | 18-Mov-53
102 Goofy 21-Jun-E2
Table name: PLAY
PLAY _CODE | PLAY _MAME DiF:_UN

Identify the primary keys.
Identify the foreign keys.
Create the ERM.

1001 | Cat On & Cold, Bare Roof

1002 Hold the Mayo, Pass the Bread
1003 | Mever Promized You Coffee
1004 | Silly Putty Goes To VWashington
1005 See Mo Sound, Hear Mo Sight
1006 Starstruck in Biloxi

1007 | Stranget In Parrot loe

102
1M
102
100
1m
102
1m

Create the relational diagram to show the relationship between DIRECTOR and PLAY.

Suppose you wanted quick lookup capability to get a listing of all plays directed by a
given director. Which table would be the basis for the INDEX table, and what would

be the index key?

What would be the conceptual view of the INDEX table described in Question 26?2

Depict the contents of the conceptual INDEX table.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110 Part2 Design Concepts

Problems

FIGURE P3.1 THE CHO3_STORECO ABASE TABLES

Table name: EMPLOYEE Database name: Ch03_StoreCo
| EMP_CODE | EMP_TITLE | EMP_LNAME | EMP_FNAME | EMP_IMITIAL | EMP_DOB | STORE_CCDE |
1 hr. Williamszan Jahin [21 -Wlary-64 3
2 M=, Ratula Mancy 09-Feh-69 2
3 Mz, Greenboro Lottie R 02-Cct-61 4
4 b=, Fumpersfro | Jennie = 01 -Jun-71 E)
S hr. Smith Fobert L 23-Maore-29]
G hir. Renselasr Cary A 25-Dec-B5 1
7 hir. Ogallo Foberto S 31-Jul-E2 3
8 M=, JohnEson Elizabeth | 10-Sep-65 1
=N Eind=mar Jack Wy 18-Apr-55 2
10 Mrs. Jones Rose R O6-hdar-66 4
11 Mr. Broderick Tom 21-0ct-72]
12 M. Washington | Alan ks 08-Sep-74 2
13 M. Zmith Peter I 2a-Aug-64 3
14| Mz Zmith Sherry H 25-May-66 4
15 M. Olenka Heovvard] 24-Mlary-64 B
16 M. Archizlo Barry W 03-Sep-60 B
17 M= Grimaldo Jeanine H 12-More-70 4
18 M. Rozenbery Aricdr ey nl 24-Jan-71 4
19 M. Rosten Peter F 03-Oct-65 4
20 M. hckee Fobert = O6-bdar-70 1
21 M= Baumann Jennifer A 11 -Dec-74]

Table name: STORE
| STORE_CODE| STORE MAME [STORE ¥TD_SALES | REGION_CODE | EMP_CODE

1 Access Junction 1003455 76 2 g
2 Databaze Corner 14218957 .39 2 12
3| Tuple Charge S867E3 22 1 7
4 sttribite Alley 944563 56 2 3
5| Primary Key Poirt 2A30095 45 1 13

Table name: REGION

| REGION_CODE | REGION_DESCRIPT
1| East
2| ezt

Use the database shown in Figure P3.1 to answer Problems 1-9.
1. For each table, identify the primary key and the foreign key(s). If a table does not
have a foreign key, write None.

2. Do the tables exhibit entity integrity? Answer yes or no, and then explain your
answer.

3. Do the tables exhibit referential integrity? Answer yes or no, and then explain
your answer. Write NA (Not Applicable) if the table does not have a foreign key.

4. Describe the type(s) of relationship(s) between STORE and REGION.
Create the ERD to show the relationship between STORE and REGION.

6. Create the relational diagram to show the relationship between STORE and
REGION.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 111

7. Describe the type(s) of relationship(s) between EMPLOYEE and STORE.
(Hint: Each store employs many employees, one of whom manages the store.)

8. Create the ERD to show the relationships among EMPLOYEE, STORE, and
REGION.

9. Create the relational diagram to show the relationships among EMPLOYEE, STORE,
and REGION.

FIGURE P3.10 THE CHO3_BENECO DATABASE TABLES

Database name: Ch03_BeneCo

Table name: EMPLOYEE Table name: BENEFIT
| EMP_COCE | EMP_LMAME | JOB_CODE EMP_CODE | PL&N_CODE |
14 Rudell 2 15 2
15 McDace 1 15 3
16 Ruellarda 1 16 1
17| Smith 3 17 1
20/ Smmith 2 17 3
17 4
20 3
Table name: JOB Table name: PLAN
| JOB_CODE | JOB_DESCRIPTION | PLAN_CODE | PLAN_DESCRIPTION
1 Clerical 1| Term life
2| Technical 2| Stock purchase
3 Managerial 3| Long-term dizakbility
4| Dental

Use the database shown in Figure P3.10 to work Problems 10-16. Note that the database
is composed of four tables that reflect these relationships:

« An EMPLOYEE has only one JOB_CODE, but a JOB_CODE can be held by many
EMPLOYEEs.

o An EMPLOYEE can participate in many PLANs, and any PLAN can be assigned to
many EMPLOYEEs.

Note also that the M:N relationship has been broken down into two 1:M relationships for

which the BENEFIT table serves as the composite or bridge entity.

10. For each table in the database, identify the primary key and the foreign key(s). If a
table does not have a foreign key, write None.

11. Create the ERD to show the relationship between EMPLOYEE and JOB.

12. Create the relational diagram to show the relationship between EMPLOYEE and
JOB.

13. Do the tables exhibit entity integrity? Answer yes or no, and then explain your
answer.

14. Do the tables exhibit referential integrity? Answer yes or no, and then explain your
answer. Write NA (Not Applicable) if the table does not have a foreign key.

15. Create the ERD to show the relationships among EMPLOYEE, BENEFIT, JOB, and
PLAN.

16. Create the relational diagram to show the relationships among EMPLOYEE,
BENEFIT, JOB, and PLAN.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112 Part2 Design Concepts

FIGURE P3.17 THE CHO3_TRANSCO DATABASE TABLES

Table name: TRUCK Database name: Ch03_TransCo
Primary key: TRUCK_NUM
Foreign key: BASE_CODE, TYPE_CODE

TRUCK_MUM | BASE_CODE | TYPE_CODE | TRUCK_MLES | TRUCK_BUY _DATE | TRUCK_SERIAL_NUM |
1001 01 1 321235 23-Sep-07 | 88-322-1221 24011
1002 202 1 76984 3 05-Feh-06 | AC-342-22134-023
1003 a01 2 12346 5 11-Mov-06 | 8C-445-FEESE-799
1004 1 28943 06-Jan-07 | ¥ia-112-231 44-T34
1005 a03 2 456731 01-Mar-06 | FR-398-322454412
1006 a01 2 1932457 15-Jul-03| 80-456-00845-R 45
1007 502 3 320123 17-0ct-04 | 8,8,-341-96573-754
1008 A0z 3 44213 5 07-Aug-05 | DR-559-22159-D33
1009 A% 2 109324 12-Feh-08 | DE-587-95456-E94

Table name: BASE
Primary key: BASE_CODE
Foreign key: none

|BasE_coDE| BasE CTY | BASE_STATE | BASE_AREA_CODE | BASE PHONE | BASE_MANAGER

501 | Murfreesboro TH B15 123-4567 Andrea D Gallager
502 Lexington W 565 234-5678 George H. Delarosa
203 Cape Girardeauy | MO 436 345-6789 aria J. Talinco
=04 | Dalton G a0 456-7390 Peter F. McAves

Table name: TYPE
Primary key: TYPE_CODE
Foreign key: none
| TvPE_CODE | TYPE_DESCRIPTION
1 Single box, double-axle
2 Single box, single-axle
3| Tandem trailer, single-axle

Use the database shown in Figure P3.17 to answer Problems 17-23.

17. For each table, identify the primary key and the foreign key(s). If a table does not
have a foreign key, write None.

18. Do the tables exhibit entity integrity? Answer yes or no, and then explain your
answer.

19. Do the tables exhibit referential integrity? Answer yes or no, and then explain your
answer. Write NA (Not Applicable) if the table does not have a foreign key.

20. Identify the TRUCK table’s candidate key(s).
21. For each table, identify a superkey and a secondary key.
22. Create the ERD for this database.

23. Create the relational diagram for this database.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table name: CHARTER

Chapter 3 The Relational Database Model 113

FIGURE P3.24 THE CHO3_AVIACO DATABASE TABLES

Database name: Ch03_AviaCo

CHAR_TRIF | CHAR_DATE | CHAR_FILOT | CHAR_COPILOT | AC_MUMEER | CHAR_DESTINATION | CHAR_DISTANCE | CHAR_HOURS_FLOWH | CHAR_HOURS WAIT | CHAR_FUEL_GALLONS | CHAR_OIL_GTS | cUS_CODE |

10001 05-Feh-16 104 22890 ATL
10002 05-Feh-16 10 277 B
10003 05-Feb-16 105 109 4275Y GhY
10004 05-Feh-16 106! 1484F STL
10005 OE-Feb-16 101 22891 ATL
10008 0B-Feh-16 109 4278Y STL
10007 06-Feh-16 104 105 2778y GMY
10003 07-Feb-16 106! 1434F VS
10003 07-Feh-16 105 22891 GMY
10010 07-Feb-16 109 4278V ATL
10011 07-Feh-16 101 104 1434 Bk,
10012 08-Feb-16 101 2778 MOB
10013 03-Feh-16 108 4278Y VS
10014 03-Feh-16 106! 4278V ATL
10015 03-Feb-16 104 101 22390 GhY
10016 09-Feh-16 109 103 2778 MY
10017 10-Feb-16 101 1484F STl
10018 10-Feh-16 105 104 4278Y TV

a36.0
200
15740
4720
10230
4720
15740
B44.0
15740
9350
3520

1 22 3541 1 10011
16 0o 726 1) 10016
78 0o 3396 2 10014
29 4.3 arz 1 10013
57 35 3977 2 10011
26 52 171 0 10017
74 0o 3484 2 10012
41 oo 140 6 1 10014
BE 234 4599 0 10017
B2 32 2797 0 10018
19 53 6B .4 1 10012
48 42 2151 0 10010
39 4.5 1743 1 10011
61 21 3026 1) 10017
67 0o 4595 2 10018
13 0.0 G672 0 10011
31 oo 105 5 0 10014
38 4.5 167 4 0 10017

The destinations are indicated by standard three-letter airport codes. For example,
STL = St. Louis, MO

Table name: AIRCRAFT

ATL = Atlanta, GA

BNA = Nashville, TN

AC-TTAF = Aircraft total time, airframe (hours)

[AC_NUMBER | MOD_CODE | AC_TTAF | AC_TTEL | AC_TTER AC-TTEL =Total time, left engine (hours)

1484P PAZ3-250 18331 18331 AC_TTER = Total time, right engine (hours)

22891 C-904, 42438 765.9

2778 PA31-350 79929 1513.1 In a fully developed system, such attribute values

4278 PA31-350 2147.3 B22.1 would be updated by application software when the
CHARTER table entries were posted.

Table name: MODEL

[MOD_CODE| MOD_MANUFACTURER | MOD_NAME | MOD_SEATS | MOD_CHG_MILE |

B200 Beechcratt Super Kingdir 10 183

C-304, Beechcraft King&ir g 267

PA23-220 Piper Axtec g 193

P&3-350 | Piper Mavajo Chisftain 10 235

Customers are charged per round-trip mile, using the MOD_CHG_MILE rate. The MOD_SEATS column lists the total
number of seats in the airplane, including the pilot and copilot seats. Therefore, a PA31-350 trip that is flown by a pilot
and a copilot has eight passenger seats available.

Use the database shown in Figure P3.24 to answer Problems 24-31. AviaCo is an air-
craft charter company that supplies on-demand charter flight services using a fleet
of four aircraft. Aircraft are identified by a unique registration number. Therefore,
the aircraft registration number is an appropriate primary key for the AIRCRAFT

table.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114 Part2 Design Concepts

FIGURE P3.24 THE CHO3_AVIACO DATABASE TABLES (CONTINUED)

Table name: PILOT

Database name: Ch03_AviaCo

[(EMP_MUM | PIL_LICENSE | PIL_RATINGS FIL_MED_TPE | PIL_MED_DATE | PIL_PTI35 DATE |
109 ATP ATPISELMELAnstr/CFIl 1 20-Jan-15 11-Jan-15
104] 8P ATPISELMELAnstr 1 18-Dec-15 17-Jan-18
105, COM COMMSELMELAnstriCFl | 2 05-Jan-16 02-Jan-16
106 COM COMM/SELMELAnatr 2 10-Dec-15 02-Feb-15
108 COM ATPISELMEL/SESAnStr/CFIl |1 22-Jan-18 15-Jan-18

The pilot licenses shown in the PILOT table include ATP = Airline Transport Pilot and COMM = Commercial Pilot.
Businesses that operate on-demand air services are governed by Part 135 of the Federal Air Regulations (FARs), which
are enforced by the Federal Aviation Administration (FAA). Such businesses are known as “Part 135 operators.” Part 135
operations require that pilots successfully complete flight proficiency checks every six months. The “Part 135” flight
proficiency check date is recorded in PIL_PT135_DATE. To fly commercially, pilots must have at least a commercial
license and a second-class medical certificate (PIL_MED_TYPE = 2).

The PIL_RATINGS include:

SEL = Single Engine, Land MEL = Multiengine, Land
SES = Single Engine, Sea Instr. = Instrument
CFI = Certified Flight Instructor CFIl = Certified Flight Instructor, Instrument

Table name: EMPLOYEE

100 M.
101 Ms.
102 M.
103 Ms.
104 M.
105 M.
106 | Mrs.
107 | M.
103 Mr.
109 Ms.
110] Mrs.

| EMP_NUM | EMP_TITLE | EMP_LNAME | EMP_FNAME | EMP_INITIAL | EMP_DOB | EMP_HIRE_DATE
Kolmycz George al 15-Jun-42 15-Mar-85
Lewis Rhonda G 19-Mar-65 25-Apr-o6
Yandarm Rhett 14-Mow-58 18-May-93
Jones Anne il 11-May-74 26-Jul-99
Lange John P 12-Jul-71 20-Aug-90
Williarms Robert al 14-Mar-75 19-Jun-03
Duzak Jeanine K 12-Feb-68 13-Mar-89
Diante Jorge al 01-May-75 02-Jul-97
Wiesenbach | Paul R 14-Feb-65 03-Jun-93
Travis Elizabeth K 18-Jun-61 14-Feb-06
Genkazi Leighla WY 19-May-70 29-Jun-90

Table name: CUSTOMER

10010 Ramas
10011 Dunne
10012 Smith
10013 Olowski
10014 Orlando
10015 O'Brian
10016 Brown
10017 | Williarns
10018 Farriss
10019 Smith

[CUS_CODE | CUS LMAME [CUS_FNAME | CUS_IMITIAL | CUS_AREACODE | CUS _PHOME | CUS_BALANCE
Alfred A B15 B44-2573 0.0
Leona K 713 594-1235 0.00
Kathy W B15 5942285 895 54
Paul F B15 594-2180 1285.19
hyron B15 2221672 B73.21
Arny B 713 442-3351 1014.56
James G B15 2971228 0.0
George B15 250-2556 0.0
Anne G 713 3827185 0.0
Olette K B15 2597-3509 45395

The nulls in the CHARTER tables CHAR_COPILOT column indicate that a copilot is
not required for some charter trips or for some aircraft. Federal Aviation Administration
(FAA) rules require a copilot on jet aircraft and on aircraft that have a gross take-oft
weight over 12,500 pounds. None of the aircraft in the AIRCRAFT table are governed
by this requirement; however, some customers may require the presence of a copilot for
insurance reasons. All charter trips are recorded in the CHARTER table.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 The Relational Database Model 115

Note

Earlier in the chapter, you were instructed to avoid homonyms and synonym:s. In this prob-
lem, both the pilot and the copilot are listed in the PILOT table, but EMP_NUM cannot
be used for both in the CHARTER table. Therefore, the synonyms CHAR_PILOT and CHAR_
COPILOT were used in the CHARTER table.

Although the solution works in this case, it is very restrictive, and it generates nulls
when a copilot is not required. Worse, such nulls proliferate as crew requirements
change. For example, if the AviaCo charter company grows and starts using larger air-
craft, crew requirements may increase to include flight engineers and load masters.
The CHARTER table would then have to be modified to include the additional crew
assignments; such attributes as CHAR_FLT_ENGINEER and CHAR_LOADMASTER would
have to be added to the CHARTER table. Given this change, each time a smaller aircraft
flew a charter trip without the number of crew members required in larger aircraft, the
missing crew members would yield additional nulls in the CHARTER table.

You will have a chance to correct those design shortcomings in Problem 27.The problem
illustrates two important points:

1. Don't use synonymes. If your design requires the use of synonyms, revise the design!

2.To the greatest possible extent, design the database to accommodate growth without
requiring structural changes in the database tables. Plan ahead and try to anticipate the
effects of change on the database.

24. For each table, identify each of the following when possible:
a. The primary key
b. A superkey
c. A candidate key
d. The foreign key(s)
e. A secondary key

25. Create the ERD. (Hint: Look at the table contents. You will discover that an AIR-
CRAFT can fly many CHARTER trips but that each CHARTER trip is flown by one
AIRCRAFT, that a MODEL references many AIRCRAFT but that each AIRCRAFT
references a single MODEL, and so on.)

26. Create the relational diagram.

27. Modify the ERD you created in Problem 25 to eliminate the problems created by
the use of synonyms. (Hint: Modify the CHARTER table structure by eliminating
the CHAR_PILOT and CHAR_COPILOT attributes; then create a composite table
named CREW to link the CHARTER and EMPLOYEE tables. Some crew members,
such as flight attendants, may not be pilots. That's why the EMPLOYEE table enters
into this relationship.)

28. Create the relational diagram for the design you revised in Problem 27.

You want to see data on charters flown by either Robert Williams (employee number
105) or Elizabeth Travis (employee number 109) as pilot or copilot, but not charters
flown by both of them. Complete Problems 29-31 to find this information.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116 Part2 Design Concepts

29. Create the table that would result from applying the SELECT and PROJECT
relational operators to the CHARTER table to return only the CHAR_TRIP,
CHAR_PILOT, and CHAR_COPILOT attributes for charters flown by either
employee 105 or employee 109.

30. Create the table that would result from applying the SELECT and PROJECT rela-
tional operators to the CHARTER table to return only the CHAR_TRIP, CHAR _
PILOT, and CHAR_COPILOT attributes for charters flown by both employee 105
and employee 109.

31. Create the table that would result from applying a DIFFERENCE relational operator
of your result from Problem 29 to your result from Problem 30.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Entity Relationship (ER) Modeling

In this chapter, you will learn:

« The main characteristics of entity relationship components

» How relationships between entities are defined, refined, and incorporated into the
database design process

« How ERD components affect database design and implementation

« That real-world database design often requires the reconciliation of conflicting goals

Preview

CHO04_TinyCollege
CHO4_TinyCollege_Alt v

CHO04_ShortCo

This chapter expands coverage of the data-modeling aspect of database design. Data
modeling is the first step in the database design journey, serving as a bridge between
real-world objects and the database model that is implemented in the computer. There-
fore, the importance of data-modeling details, expressed graphically through entity
relationship diagrams (ERDs), cannot be overstated.

Most of the basic concepts and definitions used in the entity relationship model (ERM)
were introduced in Chapter 2, Data Models. For example, the basic components of entities
and relationships and their representation should now be familiar to you. This chapter
goes much deeper, analyzing the graphic depiction of relationships among the entities
and showing how those depictions help you summarize the wealth of data required to
implement a successful design.

Finally, the chapter illustrates how conflicting goals can be a challenge in database
design and might require design compromises.

Data Files and Available Formats

(MS Access] Oracle | MSSOL § MySOL | | Oracle | MSSOL | mMySOL |
v v v' CHO04_Clinic v v v v
v v v' CHO04_PartCo v v v v
v v v' CHO4_CollegeTry v v v v

Data Files Available on cengagebrain.com

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118 Part2 Design Concepts

Note

Because this book generally focuses on the relational model, you might be tempted to
conclude that the ERM is exclusively a relational tool. Actually, conceptual models such as
the ERM can be used to understand and design the data requirements of an organization.
Therefore, the ERM is independent of the database type. Conceptual models are used in
the conceptual design of databases, while relational models are used in the logical design
of databases. However, because you are familiar with the relational model from the pre-
vious chapter, the relational model is used extensively in this chapter to explain ER con-
structs and the way they are used to develop database designs.

Online
Content

To learn how to create ER
diagrams with the help
of Microsoft Visio, go to
www.cengagebrain.com:
Appendix A, Designing
Databases with Visio
Professional: A Tutorial,
shows you how to cre-
ate Crow’s Foot ERDs.
Appendix H, Unified
Modeling Language
(UML), shows you how
to create UML class
diagrams.

4-1 The Entity Relationship Model (ERM)

You should remember from Chapter 2, Data Models, and Chapter 3, The Relational Data-
base Model, that the ERM forms the basis of an ERD. The ERD represents the concep-
tual database as viewed by the end user. ERDs depict the database’s main components:
entities, attributes, and relationships. Because an entity represents a real-world object,
the words entity and object are often used interchangeably. Thus, the entities (objects)
of the Tiny College database design developed in this chapter include students, classes,
teachers, and classrooms. The order in which the ERD components are covered in the
chapter is dictated by the way the modeling tools are used to develop ERDs that can form
the basis for successful database design and implementation.

In Chapter 2, you also learned about the various notations used with ERDs—the
original Chen notation and the newer Crow’s Foot and UML notations. The first two
notations are used at the beginning of this chapter to introduce some basic ER model-
ing concepts. Some conceptual database modeling concepts can be expressed only using
the Chen notation. However, because the emphasis is on design and implementation of
databases, the Crow’s Foot and UML class diagram notations are used for the final Tiny
College ER diagram example. Because of its emphasis on implementation, the Crow’s
Foot notation can represent only what could be implemented. In other words:

« The Chen notation favors conceptual modeling.
« The Crow’s Foot notation favors a more implementation-oriented approach.

« The UML notation can be used for both conceptual and implementation modeling.

4-1a Entities

Recall that an entity is an object of interest to the end user. In Chapter 2, you learned
that, at the ER modeling level, an entity actually refers to the entity set and not to a single
entity occurrence. In other words, an entity in the ERM corresponds to a table—not to a
row—in the relational environment. The ERM refers to a table row as an entity instance
or entity occurrence. In the Chen, Crow’s Foot, and UML notations, an entity is repre-
sented by a rectangle that contains the entity’s name. The entity name, a noun, is usually
written in all capital letters.

4-1b Attributes

Attributes are characteristics of entities. For example, the STUDENT entity includes
the attributes STU_LNAME, STU_FNAME, and STU_INITIAL, among many others.
In the original Chen notation, attributes are represented by ovals and are connected

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Entity Relationship (ER) Modeling 119

to the entity rectangle with a line. Each oval contains the name of the attribute it
represents. In the Crow’s Foot notation, the attributes are written in the attribute box
below the entity rectangle. (See Figure 4.1.) Because the Chen representation con-
sumes more space, software vendors have adopted the Crow’s Foot attribute display.

FIGURE 4.1 THE ATTRIBUTES OF THE STUDENT ENTITY: CHEN AND CROW'’S FOOT

Chen Model Crow’s Foot Model
STU_INITIAL STUDENT
STU_LNAME
STU_FNAME
STU_INITIAL
STU_EI'I."IAIL
STU PHONME
STUDENT -

Required and Optional Attributes A required attribute is an attribute that must
have a value; in other words, it cannot be left empty. As shown in Figure 4.1, the two
boldfaced attributes in the Crow’s Foot notation indicate that data entry will be required.
STU_LNAME and STU_FNAME require data entries because all students are assumed
to have a last name and a first name. However, students might not have a middle name,
and perhaps they do not yet have a phone number and an email address. Therefore, those
attributes are not presented in boldface in the entity box. An optional attribute is an
attribute that does not require a value; therefore, it can be left empty.

Domains Attributes have a domain. As you learned in Chapter 3, a domain is the set of
possible values for a given attribute. For example, the domain for a grade point average
(GPA) attribute is written (0,4) because the lowest possible GPA value is 0 and the highest
possible value is 4. The domain for a gender attribute consists of only two possibilities: M
or F (or some other equivalent code). The domain for a company’s date of hire attribute
consists of all dates that fit in a range (for example, company startup date to current date).

Attributes may share a domain. For instance, a student address and a professor address
share the same domain of all possible addresses. In fact, the data dictionary may let a
newly declared attribute inherit the characteristics of an existing attribute if the same
attribute name is used. For example, the PROFESSOR and STUDENT entities may each
have an attribute named ADDRESS and could therefore share a domain.

Identifiers (Primary Keys) The ERM uses identifiers—one or more attributes that
uniquely identify each entity instance. In the relational model, entities are mapped to tables,
and the entity identifier is mapped as the table’s primary key (PK). Identifiers are underlined
in the ERD. Key attributes are also underlined in a frequently used shorthand notation for the
table structure, called a relational schema, that uses the following format:

TABLE NAME (KEY_ATTRIBUTE 1, ATTRIBUTE 2, ATTRIBUTE 3, ... ATTRIBUTE K)

For example, a CAR entity may be represented by:
CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR)
Each car is identified by a unique vehicle identification number, or CAR_VIN.

Composite Identifiers Ideally, an entity identifier is composed of only a single attri-
bute. For example, the table in Figure 4.2 uses a single-attribute primary key named

required attribute

In ER modeling, an
attribute that must have
a value. In other words, it
cannot be left empty.

optional attribute

In ER modeling, an
attribute that does not
require a value; therefore,
it can be left empty.

identifiers

One or more attributes
that uniquely identify
each entity instance.

relational schema
The organization of

a relational database

as described by the
database administrator.

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120 Part2 Design Concepts

CLASS_CODE. However, it is possible to use a composite identifier, a primary key
composed of more than one attribute. For instance, the Tiny College database admin-
istrator may decide to identify each CLASS entity instance (occurrence) by using a
composite primary key of CRS_CODE and CLASS_SECTION instead of using CLASS_
CODE. Either approach uniquely identifies each entity instance. Given the structure of
the CLASS table shown in Figure 4.2, CLASS_CODE is the primary key, and the combi-
nation of CRS_CODE and CLASS_SECTION is a proper candidate key. If the CLASS_
CODE attribute is deleted from the CLASS entity, the candidate key (CRS_CODE and
CLASS_SECTION) becomes an acceptable composite primary key.

FIGURE 4.2 THE CLASS TABLE (ENTITY) COMPONENTS AND CONTENTS

Database name: Ch04_TinyCollege

| CLASS_CODE | CRS_CODE | CLASS_SECTION | CLASS_TME | ROOM_CODE | PROF_MNUM |
10012 ACCT-211 1 MyWF 5:00-6:50 am. | BUS3 105
10013 ACCT-211 2 MyWF 9:00-8:50 aum. | BUSZ200 105
10014 ACCT-211 3 TTh230-3:45 pm. | BUS252 342
10015 ACCT-212 1 MyYF 10:00-10:50 &.m. | BUS311 301
10016 ACCT-212 2 Th 6:00-8:40 p.m. BUs252 301
10017 ois-220 1 MyWF 9:00-8:50 aum. | KLR203 228
10018 ois-220 2 MyWF 9:00-8:50 am. | KLR211 114
10019 ois-220 3 My4F 10:00-10:50 a.m. | KLR203 228
10020 cis-420 1 v 6:00-5:40 pm. KLR203 162
10021 oM-261 1 MyWF 5:00-8:50 aum. | KLR200 114
10022 oM-281 2 TTh1:00-215pm. KLR200 114
10023 oM-382 1 My4F 11:00-11:50 a.m. | KLR200 162
10024 oM-382 2 TTh230-3:45 pm. KLR200 162
10025 MATH-243 1 Th 6:00-8:40 p.m. DRE155 325

Note

Remember that Chapter 3 made a commonly accepted distinction between COURSE
and CLASS. A CLASS constitutes a specific time and place of a COURSE offering. A class
is defined by the course description and its time and place, or section. Consider a profes-
sor who teaches Database |, Section 2; Database |, Section 5; Database |, Section 8; and
Spreadsheet Il, Section 6. The professor teaches two courses (Database | and Spreadsheet Il),
but four classes. Typically, the COURSE offerings are printed in a course catalog, while the
CLASS offerings are printed in a class schedule for each term.

composite identifier
In ER modeling, a key
composed of more than
one attribute.

composite attribute
An attribute that can be
further subdivided to

yield additional attributes.

For example, a phone
number such as 615-898-
2368 may be divided
into an area code (615),
an exchange number
(898), and a four-digit
code (2368). Compare to
simple attribute.

If the CLASS_CODE in Figure 4.2 is used as the primary key, the CLASS entity may
be represented in shorthand form as follows:

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, CLASS_TIME,
ROOM_CODE, PROF_NUM)

On the other hand, if CLASS_CODE is deleted, and the composite primary key is the
combination of CRS_CODE and CLASS_SECTION, the CLASS entity may be repre-
sented as follows:

CLASS (CRS_CODE, CLASS_SECTION, CLASS_TIME, ROOM_CODE, PROF_NUM)

Note that both key attributes are underlined in the entity notation.

Composite and Simple Attributes Attributes are classified as simple or composite.
A composite attribute, not to be confused with a composite key, is an attribute that can

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Entity Relationship (ER) Modeling 121

be further subdivided to yield additional attributes. For example, the attribute ADDRESS
can be subdivided into street, city, state, and zip code. Similarly, the attribute PHONE_
NUMBER can be subdivided into area code and exchange number. A simple attribute
is an attribute that cannot be subdivided. For example, age, sex, and marital status would
be classified as simple attributes. To facilitate detailed queries, it is wise to change com-
posite attributes into a series of simple attributes.

The database designer must always be on the lookout for composite attributes. It is
common for business rules to use composite attributes to simplify policies, and users
often describe entities in their environment using composite attributes. For example, a
user at Tiny College might need to know a student’s name, address, and phone number.
The designer must recognize that these are composite attributes and determine the cor-
rect way to decompose the composite into simple attributes.

Single-Valued Attributes A single-valued attribute is an attribute that can have
only a single value. For example, a person can have only one Social Security number, and
a manufactured part can have only one serial number. Keep in mind that a single-valued
attribute is not necessarily a simple attribute. For instance, a part’s serial number (such as
SE-08-02-189935) is single-valued, but it is a composite attribute because it can be sub-
divided into the region in which the part was produced (SE), the plant within that region
(08), the shift within the plant (02), and the part number (189935).

Multivalued Attributes Multivalued attributes are attributes that can have many
values. For instance, a person may have several college degrees, and a household may
have several different phones, each with its own number. Similarly, a car’s color may be
subdivided into many colors for the roof, body, and trim. In the Chen ERM, multivalued
attributes are shown by a double line connecting the attribute to the entity. The Crow’s
Foot notation does not identify multivalued attributes. The ERD in Figure 4.3 contains
all of the components introduced thus far; note that CAR_VIN is the primary key, and
CAR_COLOR is a multivalued attribute of the CAR entity.

FIGURE 4.3 A MULTIVALUED ATTRIBUTE IN AN ENTITY

simple attribute

An attribute that
cannot be subdivided
into meaningful
components. Compare
to composite attribute.

single-valued
attribute

An attribute that can
have only one value.

multivalued
attribute

An attribute that can
have many values for a
single entity occurrence.
For example, an EMP_
DEGREE attribute might
store the string “BBA,
MBA, PHD"to indicate
three different degrees
held.

Chen Model Crow’s Foot Model
CAR
MOD_CODE
CAR_YEAR
@ CAR CAR_COLOR

Note

In the ERD models in Figure 4.3, the CAR entity’s foreign key (FK) has been typed as MOD_
CODE. This attribute was manually added to the entity. Actually, proper use of database
modeling software will automatically produce the FK when the relationship is defined.
In addition, the software will label the FK appropriately and write the FK's implementa-
tion details in a data dictionary. Therefore, when you use professional database modeling
software, never type the FK attribute yourself; let the software handle that task when the
relationship between the entities is defined. (You can see how this works in Appendix A,
Designing Databases with Visio Professional: A Tutorial, at www.cengagebrain.com.)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122 Part2 Design Concepts

Implementing Multivalued Attributes Although the conceptual model can han-
dle M:N relationships and multivalued attributes, you should not implement them in the
RDBMS. Remember from Chapter 3 that in the relational table, each column and row
intersection represents a single data value. So, if multivalued attributes exist, the designer
must decide on one of two possible courses of action:

1.

Within the original entity, create several new attributes, one for each component
of the original multivalued attribute. For example, the CAR entity’s attribute CAR _
COLOR can be split to create the new attributes CAR_TOPCOLOR, CAR_BODY-
COLOR, and CAR_TRIMCOLOR, which are then assigned to the CAR entity.
(See Figure 4.4.)

FIGURE 4.4 SPLITTING THE MULTIVALUED ATTRIBUTE INTO NEW ATTRIBUTES

MOD_CODE CAR_TOPCOLOR
CAR_TOPCOLOR
CAR CAR_TRIMCOLOR CAR_TRIMCOLOR
CAR_BODYCOLOR

Chen Model Crow’s Foot Model

CAR_YEAR CAR
PK |CAR_VIN

MOD_CODE
CAR_YEAR

CAR_BODYCOLOR

Although this solution seems to work, its adoption can lead to major structural prob-
lems in the table. It is only acceptable if every instance will have the same number
of values for the multivalued attribute, and no instance will ever have more values.
However, even in this case, it is a gamble that new changes in the environment will
never create a situation where an instance would have more values than before. For
example, if additional color components—such as a logo color—are added for some
cars, the table structure must be modified to accommodate the new color section. In
that case, cars that do not have such color sections generate nulls for the nonexistent
components, or their color entries for those sections are entered as N/A to indicate
“not applicable” (The solution in Figure 4.4 is to split a multivalued attribute into
new attributes, but imagine the problems this type of solution would cause if it were
applied to an employee entity that contains employee degrees and certifications. If
some employees have 10 degrees and certifications while most have fewer or none,
the number of degree/certification attributes would be 10, and most of those attribute
values would be null for most employees.) In short, although you have seen solution 1
applied, it is not always acceptable.

Create a new entity composed of the original multivalued attribute’s components.
This new entity allows the designer to define color for different sections of the car.
(See Table 4.1.) Then, this new CAR_COLOR entity is related to the original CAR
entity in a 1:M relationship.

Using the approach illustrated in Table 4.1, you even get a fringe benefit: you can now

assign as many colors as necessary without having to change the table structure. The
ERM shown in Figure 4.5 reflects the components listed in Table 4.1. This is the preferred
way to deal with multivalued attributes. Creating a new entity in a 1:M relationship with
the original entity yields several benefits: it is a more flexible, expandable solution, and it
is compatible with the relational model!

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the éBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Entity Relationship (ER) Modeling 123

TABLE 4.1
COMPONENTS OF THE MULTIVALUED ATTRIBUTE
. . . »
Top White
Body Blue
Trim Gold
Interior Blue
FIGURE 4.5 A NEW ENTITY SET COMPOSED OF A MULTIVALUED
ATTRIBUTE’'S COMPONENTS
CAR CAR_COLOR
PK |CAR VIN PK.FK1 |CAR _VIN
g has = COL_SECTION
MOD_CODE
CAR_YEAR COL_COLOR

Note

If you are used to looking at relational diagrams such as the ones produced by Microsoft
Access, you expect to see the relationship line in the relational diagram drawn from the PK
to the FK. However, the relational diagram convention is not necessarily reflected in the
ERD. In an ERD, the focus is on the entities and the relationships between them, rather than
how those relationships are anchored graphically. In a complex ERD that includes both
horizontally and vertically placed entities, the placement of the relationship lines is largely
dictated by the designer’s decision to improve the readability of the design. (Remember
that the ERD is used for communication between designers and end users.)

Derived Attributes Finally, a derived attribute is an attribute whose value is calculated
(derived) from other attributes. The derived attribute need not be physically stored within
the database; instead, it can be derived by using an algorithm. For example, an employee’s
age, EMP_AGE, may be found by computing the integer value of the difference between
the current date and the EMP_DOB. If you use Microsoft Access, you would use the for-
mula INT((DATE() - EMP_DOB)/365). In Microsoft SQL Server, you would use SELECT
DATEDIFF(“YEAR”, EMP_DOB, GETDATE()), where DATEDIFF is a function that
computes the difference between dates. The first parameter indicates the measurement (in
this case, years). If you use Oracle, you would use SYSDATE instead of DATE(). (You are
assuming, of course, that EMP_DOB was stored in the Julian date format.)

Similarly, the total cost of an order can be derived by multiplying the quantity ordered
by the unit price. Or, the estimated average speed can be derived by dividing trip distance
by the time spent en route. A derived attribute is indicated in the Chen notation by a dashed

derived attribute
An attribute that does
not physically exist

line that connects the attribute and the entity. (See Figure 4.6.) The Crow’s Foot notation within t